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Abstract Recent culture-independent molecular analyses
have shown the diversity and ecological importance of
microbial eukaryotes (protists) in various marine envi-
ronments. In the present study we directly extracted
DNA from anoxic sediment near active fumaroles on a
submarine caldera floor at a depth of 200 m and con-
structed genetic libraries of PCR-amplified eukaryotic
small-subunit (SSU) rDNA. By sequencing cloned SSU
rDNA of the libraries and their phylogenetic analyses, it
was shown that most sequences have affiliations with
known major lineages of eukaryotes (Cercozoa, Alveo-
lata, stramenopiles and Opisthokonta). In particular,
some sequences were closely related to those of repre-
sentatives of eukaryotic parasites, such as Phagomyxa
and Cryothecomonas of Cercozoa, Pirsonia of stra-
menopiles and Ichthyosporea of Opisthokonta, although
it is not clear whether the organisms occur in free-living
or parasitic forms. In addition, other sequences did not
seem to be related to any described eukaryotic lineages
suggesting the existence of novel eukaryotes at a high-
taxonomic level in the sediment. The community com-
position of microbial eukaryotes in the sediment we
surveyed was different overall from those of other anoxic
marine environments previously investigated.
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Introduction

Over the past several years there has been an increasing
interest in the diversity of microbial eukaryotes, espe-
cially protists from various marine environments based
on culture-independent molecular surveys. An unex-
pectedly high amount of diversity of eukaryotic small-
subunit (SSU) rDNA sequence recovered from a ‘pico-
sized’ fraction of the deep-sea (López-Garcı́a et al. 2001)
and the ocean surface (Dı́ez et al. 2001; Moon-van der
Staay at al. 2001) has been reported, and some of the
SSU rDNA sequences represented novel lineages within
known eukaryotic groups, such as alveolates (including
dinoflagellates, ciliates and apicomplexans) and stra-
menopiles (including diatoms, brown algae, labyrin-
thurids and oomycetes etc.). This approach was applied
to surveys of eukaryotic diversity in some extreme envi-
ronments, such as: acidic and iron-rich rivers (Amaral
Zettler et al. 2002); anoxic shallow sediments of marine
water and freshwater (Dawson and Pace 2002); suboxic
waters and anoxic sediments in a salt marsh (Stoeck and
Epstein 2003); permanently anoxic deep-sea waters
(Stoeck et al. 2003); and deep-sea hydrothermal vents
(Edgcomb et al. 2002; López-Garcı́a et al. 2003); as well
as ‘benign’ environments of open sea (Massana et al.
2002); coasts (Massana et al. 2004); and a river (Berney
et al. 2004). All these studies changed our view of the
biosphere, revealing the extraordinary diversity of pre-
viously undetected eukaryotic lineages. In particular, the
analyses for anoxic environments detected many novel
phylotypes at a high-taxonomic (kingdom) level (Daw-
son and Pace 2002; Edgcomb et al. 2002; López-Garcı́a
et al. 2003; Stoeck et al. 2003; Stoeck and Epstein 2003),
although some of them have been suggested to be arti-
facts caused by the failure to detect chimeric sequences,
phylogenetic misplacement of fast-evolving sequences
and incomplete sampling of described but yet as unse-
quenced eukaryotes (Berney et al. 2004). Eukaryotes may
have evolved before the planet’s biosphere became oxy-
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genated (Knoll 1999), but previous evolutionary studies
of anaerobic or anoxic-tolerant eukaryotes have been
dominated by parasites of human and commercial ani-
mals, such as diplomonads, parabasalids, microsporidia
and Entamoeba. Thus, such surveys of unknown
eukaryotic microbes inhabiting natural anoxic environ-
ments have enhanced, and will continue to enhance, our
understanding of the diversity and evolution of eukary-
otes. A recent increase in molecular data from various
environments also provides us with ecological informa-
tion regarding uncultured eukaryotes. For example,
several novel lineages of stramenopiles have been found
in anoxic environments and probably represent truely
anaerobic or anoxic-tolerant organisms rather than
invaders originating from other environments, while
other novel lineages of stramenopiles have been reported
from geographically distant marine surface waters and
are indeed cosmopolitan plankters (Massana et al. 2004).

In this study we focused on an anoxic marine envi-
ronment in Kagoshima Bay in Japan. Kagoshima Bay is
characterized by two gigantic calderas, which form the
southern and the northern areas of the bay, respectively
(Matsumoto 1943). The northern bay-head area is sep-
arated from the southern area by an active volcano, Mt.
Sakurajima, connected by a shallow, narrow strait. The
last big eruption of the northern caldera is thought to
have occurred about 22,000 years ago (Aramaki and Ui
1966). In the eastern part of the northern bay-head area,
two submarine fumaroles at depths of 80 m and 200 m
are recognized by the appearance of released gas bubbles
containing carbon dioxide, methane and hydrogen sul-
fide (Ossaka et al. 1992) and are called ‘Tagiri’ by local
fishermen (Oki and Hayasaka 1978). The word ‘Tagiri’
means ‘bubble and boil’ in Japanese. Although the
‘Tagiri’ sites are quite shallow when compared with
conventional deep-sea hydrothermal vents, the geo-
chemical characteristics of these sites are believed to be
the same or similar to those of the deep-sea vents. In
fact, around the fumaroles on the caldera floor, petro-
leum of hydrothermal origin ‘hydrothermal petroleum’,
as seen near deep-sea hydrothermal vents such as the
Guaymas Basin (Simoneit and Lonsdale 1982), has been
discovered (Yamanaka et al. 1999, 2000). Furthermore,
a representative chemosynthetic animal typically asso-
ciated with the deep-sea vents, a vestimentiferan tube-
worm, was found around the 80 m fumarole site
(Hashimoto et al. 1993). In addition, solemyid bivalves,
polychaetes, palaemonid shrimps and galatheids were
also identified at the same site (Hashimoto et al. 1993).
On the contrary, it is curious that no megabenthos were
found at the other fumarole’s site on a flat bottom at
200 m depth, although filamentous bacteria swaying in a
current of fumarolic gas and fluid were observed at this
site (Naganuma 1991). The 200 m fumarole site is much
more anoxic than the 80 m fumarole site where vestim-
entiferan tubeworms and other animals were found. This
is attributed to the fact that seawater in the northern
bay-head area deeper than 100 m is quite stagnant,
being in a semi-closed basin (Takahashi 1981). This

unusual anoxic environment is still enigmatic in terms of
an ecosystem, prompting us to investigate which
microbial eukaryotes naturally occur there.

In the present study, we directly isolated genomic
DNA from the anoxic sediment of the ‘Tagiri’ site at
200 m, cloned and sequenced PCR-amplified products
of eukaryotic SSU rDNA. Based on the retrieved se-
quences, phylogenetic analyses were performed to
examine the diversity of eukaryotes in the sediment. The
phylogenetic information obtained in our analyses was
compared with those of other environments, especially
anoxic ones.

Materials and methods

Sampling and measurement of environmental factors

The dive survey was conducted off Fukuyama in Kag-
oshima Bay using the ROV Hyper-Dolphin on Novem-
ber 22, 2003 (Cruise No. NT03-11, Hyper-Dolphin
Dive#252). A sediment sample was collected with a
sterile mud sampler (Ikemoto and Kyo 1993) at the
‘Tagiri’ site (204 m, 31� 39.747¢N, 130� 46.285¢E: WGS-
84 Datum). Vertical profiles of environmental factors
(depth, temperature, salinity and dissolved oxygen con-
centration) were measured and calculated using a CTD-
DO meter (Seabird: SBE19 + SBE23) attached to the
Hyper-Dolphin.

DNA extraction, PCR-amplification, cloning
and sequencing

Total DNA from the sediment was extracted with
UltraClean Soil DNA Isolation Kit (MO BIO Labora-
tories, Carlsbad, CA, USA). PCR-amplification using
the total DNA as a template was performed with Hot-
StarTaq DNA polymerase (QIAGEN, Tokyo, Japan)
according to the manufacturer’s instructions. Nuclear
SSU rDNA were amplified by using different combina-
tions of the primers 18S-42F (5¢-CTCAARGAY-
TAAGCCATGCA-3¢), 18S-82F (5¢-GAAACTGCGA-
ATGGCTC-3¢), 18S-1498R (5¢-CACCTACGGAA-
ACCTTGTTA-3¢), and 18S-1520R (5¢-CYGCAGGTT-
CACCTAC-3¢), under the following thermal cycle con-
ditions: 35 cycles of 1 min at 94�C, 1 min at 55�C and
2 min at 72�C, followed by a final elongation step of
10 min at 72�C. The amplified products were confirmed
on 1.0% agarose gel electrophoresis. The PCR-amplified
DNA fragments were cloned into the pCR2.1 vector of
the TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA,
USA). Positive transformants of the libraries were
screened by PCR amplification of inserts with Insert-
Check-Ready-Blue (TOYOBO, Osaka, Japan). A total
of 252 expected-size amplicons from the libraries was
partially sequenced with an ABI PRISM 3700 DNA
Analyzer (PE Biosystems, Foster City, CA, USA) using
a BigDye Terminator Cycle Sequencing Ready Reaction
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Kit (PE Biosystems) with either primer 18S-42F or 18S-
82F. Non-redundant clones were chosen for complete
sequencing. M13 Forward (�20), M13 Reverse and the
internal primers EK-555F (5¢-AGTCTGGTGCCA-
GCAGCCGC-3¢) and EK-1269R (5¢-AAGAACGGC-
CATGCACCAC-3¢) were used to complete and overlap
insert sequences. The sequences were analyzed using
GENETYX-MAC version 8.0 (Software Development,
Tokyo, Japan). The sequences were tested by the
Ribosomal Database Project CHECK_CHIMERA
program (Maidak et al. 2001) and partial treeing anal-
ysis (Hugenholtzt and Huber 2003), to detect potential
chimeric gene artifacts.

Phylogenetic analyses

Low-quality and chimeric sequences were excluded from
further phylogenetic analyses. The phylogenetic analyses
included 29 distinct eukaryotic SSU rDNA sequences
obtained in this study (GenBank under accession num-
bers AB191409-AB191437). By using CLUSTAL W ver-
sion 1.8 (Thompson et al. 1994), new SSU rDNA
sequences were aligned with those from various eukary-
otes that were retrieved from the DNA Data Bank of
Japan (DDBJ). The generated alignments were inspected
by eye and manually edited; all ambiguous sites of the
alignments were removed. Consequently, five different
alignment datasets of SSU rDNA were generated for
phylogenetic analyses: (1) Cercozoa (41 taxa/1556 sites);
(2) Alveolata (40 taxa/1629 sites); (3) stramenopiles (46
taxa/1527 sites); (4) Opisthokonta (48 taxa/1575 sites); (5)
representatives ofmostmajor eukaryotic groups (37 taxa/
1401 sites). The alignment datasets are available on re-
quest from the corresponding author. Each dataset was
tested for optimal fit of various models of nucleotide
evolution using MODELTEST version 3.06 (Posada and
Crandall 1998). The proportion of invariable sites, a dis-
crete gamma distribution (four categories) and base fre-
quencies were estimated from the dataset. Maximum-
likelihood (ML) distance was calculated under an optimal
model. A distance treewas constructed using the neighbor
joining (NJ) (Saitou and Nei 1987) method. The ML
distance bootstrap analysis (Felsenstein 1985) (1,000
replicates) was also performed. Furthermore, for the
alignment including representatives of most major euka-
raryotic groups, ML analysis with 20 random additions
and the tree bisection-reconnection branch-swapping
option was also performed under the model selected by
MODELTEST. For all phylogenetic analyses in this
study, PAUP* version 4.0 was used.

Results and discussion

Temperature, salinity and dissolved oxygen
concentration

The vertical profiles of environmental factors are shown in
Fig. 1. Temperature and salinity were 21.7�C and 33.2–

33.3 PSU on the surface, respectively. A thermocline and
a halocline existed between 60 m and 90 m depths, with
the temperature and salinity just under the layer approx-
imately 17.2�C and 34.0 PSU, respectively. Below the
layer, the temperature and salinity stabilized at 17.0–
16.4�C and 34.0–34.1 PSU, respectively. Dissolved oxy-
gen was 4.0–4.1 ml/l on the surface and decreased rapidly
at 25 mand 170 mdepths.Dissolved oxygenwas 0.05 ml/
l at the bottom (200 m depth). The temperature, salinity,
and dissolved oxygen concentration in water just above
(approximately 1.5 m) the sampling site (at 204 m depth)
were 16.4�C, 34.1 PSU, and 0.04 ml/l, respectively.

Model selection for phylogenetic analyses

Five alignment datasets were independently analyzed
using MODELTEST. Through calculation of log-like-
lihood scores, this program found that a TrN model of
nucleotide evolution (Tamura and Nei 1993) incorpo-
rating invariable sites and a discrete gamma distribution
(four categories) (TrN + I + G) was better than other
models examined for all alignment datasets. Each
dataset was therefore analyzed using an ML distance
method under this model. ML analysis for the fifth
dataset including major eukaryotic groups was also
performed under this model.

Cercozoa

The relative abundance of clones of Cercozoa (five
phylotypes, TAGIRI-1�5) was 12.5%. The NJ tree
(Fig. 2) was composed of three major distinctly separate
subgroups of Cercozoa: the parasitic Haplosporidia; the
parasitic Phytomyxea and the Filose (Cavalier-Smith
and Chao 2003) including the chlorarachniophyte algae,
testate amoebae and biciliate zooflagellates. In the tree
two species of Apusozoa (Ancyromonas sigmoides and
Amastigomonas bermudensis) were used as outgroups.
Three phylotypes TAGIRI-1, TAGIRI-2 and TAGIRI-
3 belonged to the Filosan clade. Two of them, TAGIRI-
1 and TAGIRI-2 were monophyleic with 100% boot-
strap value, and this monophyletic branch clustered with
the genus Cryothecomonas with 86% bootstrap value.
Cryothecomonas is a host specific parasitoid nano-fla-
gellate and can cause great mortality among phyto-
plankton populations (Drebes et al. 1996; Tillmann et al.
1999). It is uncertain whether the phylotypes TAGIRI-1
and TAGIRI-2 originated from the Cryothecomonas-like
parasites or not. The other filosan phylotype TAGIRI-3,
did not show supportable phylogenetic affinity with any
described species or with the other uncultured environ-
mental clones of Filosa. Two phylotypes, TAGIRI-4
and TAGIRI-5, were within the radiation of
Phytomyxea with 100% bootstrap support. The phyto-
myxean linages is divided into two clades, Plasmodi-
ophorida (land plant parasites) and Phagomyxida
(marine algal parasites) (Bulman et al. 2001;
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Cavalier-Smith and Chao 2003). TAGIRI-4 branched
with members of the Phagomyxida, the genus Phago-
myxa, with 100% bootstrap support, and TAGIRI-5
was a sister to the lineage comprising Phagomyxa and
TAGIRI-4 with 70% bootstrap support. This is the first
report of uncultured environmental clones from Phy-
tomyxea and it is unclear whether the organisms of these
two phylotypes are free-living or parasitic in the sedi-
ment.

Alveolata

The relative abundance of clones of Alveolata (five
phylotypes, TAGIRI-6�10) was 8.4%. This value was
rather low compared to environmental molecular sur-
veys previously reported (López-Garcı́a et al. 2001,

2003; Dawson and Pace 2002; Stoeck and Epstein 2003;
Berney et al. 2004). The NJ tree (Fig. 3) was composed
of six major independent subgroups of Alveolata:
dinoflagellate; ciliates; apicomplexans; Perkinsozoa;
marine alveolate group I and marine alveolate group II.
In the tree two species of stramenopiles (Skeletonema
costatum and Achlya apiculata) were used as outgroups.
Three phylotypes TAGIRI-6, TAGIRI-7, and TAGIRI-
8 were placed within the dinoflagellate radiation with
81% bootstrap support. Two of them, TAGIRI-6 and
TAGIRI-7 did not specifically nest with described spe-
cies of dinoflagellates, and could not be attributed to any
already known dioflagellate genera. The other phylotype
TAGIRI-8 was very closely related to Gymnodinium beii
(99.8% identity). Although G. beii is known to be an
intracellular symbiont of foraminifera (Spero 1987), we
could not identify any foraminifera in the sediment
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sample with light microscopy, and could not obtain any
PCR-amplified products with the set of primers specific
to foraminiferan SSU rDNA (Pawlowski et al. 1997).
Thus, it is possible that the dinoflagellate of phylotype
TAGIRI-8 occurs as a free-living cell or a symbiont of
organisms other than foraminifera in the sediment. Al-
though many dinoflagellates are known to be benthic,
we cannot exclude the possibility that these three dino-
flagellate phylotypes have planktonic origins: They may
occur as a cyst or a detrital precipitation in the sediment.
Two phylotypes TAGIRI-9 and TAGIRI-10, belonged
to the lineage of marine alveolate group I with a boot-
strap value of 100%. The SSU rDNA sequences
of marine alveolate group I have been retrieved from
diverse marine environments, including anoxic ones.

Especially, TAGIRI-9 was very closely related to the
phylotypes AT4-42 from deep-sea hydrothermal sedi-
ment at the Mid-Atlantic Ridge (López-Garcı́a et al.
2003), C1_E008, C1_E020, C2_E006, C2_E017 and
C3_E003 from deep-sea hydrothermal sediment at the
Guaymas Basin (Edgcomb et al. 2002) and D12, D51,
D188, D205, D254, E27, E214, E228 and H61 from
anoxic water in the Cariaco Basin in the Caribbean Sea
(Stoeck et al. 2003). Of the previously reported se-
quences above, only AT4-42 was included in our phy-
logenetic analysis, as the other sequences are short.
Therefore, this phylotype may be ubiquitous in anoxic
habitats. Sequences from ciliates, apicomplexans, Perk-
insozoa and marine alveolate group II were not obtained
in the present study.

100

Fig. 2 The maximum-
likelihood distance tree of
Cercozoa (41 taxa/1556 sites)
reconstructed under a TrN
nucleotide substitution model
incorporating the proportion of
invariable sites (I=0.2793) and
a discrete gamma distribution
(four categories) (parameter
a=0.5184). Two species of
Apusozoa, Ancyromonas
sigmoides and Amastigomonas
bermudensis, were used to root
the tree. Numbers at the nodes
refer to the percentage (>50%)
of bootstrap support of
maximum-likelihood distance
analysis
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Stramenopiles

The relative abundance of clones of stramenopiles (eight
phylotypes, TAGIRI-11�18) was 15.4%. The NJ tree
(Fig. 4) encompassed several photosynthetic, heterotro-

phic and two uncultured (novel) lineages of strameno-
piles. In the tree, two species of Alveolata (Heterocapsa
triquetra and Perkinsus marinus) were used as outgroups.
The phylotype TAGIRI-13 affiliated with the genus
Pirsonia with 100% bootstrap support. Pirsonia species
are parasitoid nanoflagellates that infect planktonic
diatoms (Schnepf et al. 1990; Kühn et al. 1996;
Schweikert and Schnepf 1997), like Cryothecomonas of
Cercozoa. This phylotype may be attributed to the genus
Pirsonia, but its ecological role in the sediment remains
unknown. Two phylotypes TAGIRI-11 and TAGIRI-12
were placed within the diatom radiation with a boot-
strap value of 100%. Specifically, TAGIRI-11 and
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Fig. 3 The maximum-likelihood distance tree of Alveolata (40
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TAGIRI-12 were closely related the genera Skeletonema
and Minutocellus, respectively. Because these genera are
representatives of planktonic diatoms, TAGIRI-11 and
TAGIRI-12 may originate from sinking (dead) cells.
Alternatively, it is possible that they occurred as cysts in
the sediment. As several phylotypes of possible diatom
parasites (Cryothecomonas-, Phagomyxa- and Pirsonia-
like organisms) were found in this study, the cells of
TAGIRI-11 and TAGIRI-12 may be infected by these
parasites. TAGIRI-15, TAGIRI-16 and TAGIRI-17
belonged to the labyrinthulid lineage with 81% boot-
strap support, and TAGIRI-15 and TAGIRI-16 were
closely related to each other. These three phylotypes

were basally positioned within this lineage, although
bootstrap support was rather low and the group had
little structure. Neither phylotype showed phylogenetic
affinity with any described species or previously reported
uncultured environmental clones of Labyrinthulida.
(Most previously reported environmental clones were
not included in the phylogenetic tree, because their
sequences are short.) TAGIRI-14 and TAGIRI-18 are
robustly clustered with members of the novel stra-
menopile lineages, MAST-1 and MAST-9 (Massana
et al. 2004), respectively. Massana et al. (2004) have
argued that MAST-1 contains sequences retrieved from
many pelagic oceans and a single coastal site (Roscoff),
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Fig. 4 The maximum-
likelihood distance tree of
stramenopiles (46 taxa/1527
sites) reconstructed under a
TrN nucleotide substitution
model incorporating the
proportion of invariable sites
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and appears to be a planktonic cluster. However, be-
cause the phylotypes of MAST-1, TAGIRI-14 and
BAQA232 (Dawson and Pace 2002) are obtained from
anoxic sediment, it is possible that MAST-1 includes
both planktonic and benthic organisms. Massana et al.
(2004) have also argued that MAST-9 exclusively
includes the sequences from hydrothermal vents,
and probably represents anaerobic or anoxic-tolerant
organisms. (Our phylogenetic analysis did not include
the MAST-9 members, C1_E021, C1_E024, C2_E002,
C2_E014, C2_E028, C2_E043, C3_E002, C3_E004,
C3_E007, C3_E008, C3_E017, C3_E019, C3_E026 and
C3_E044 from deep-sea hydrothermal sediment at the
Guaymas Basin [Edgcomb et al. 2002], because they are
partial sequences.) The fact that the phylotype of
MAST-9 was retrieved from the ‘Tagiri’ site supports
their hypothesis.

Opisthokonta

The relative abundance of clones of Opisthokonta (nine
phylotypes, TAGIRI-19�27) was 60.0%. The NJ tree
(Fig. 5) was composed of four major clade of Opi-
sthokonta: Ichthyosporea; choanoflagellates; fungi and
Metazoa. In the tree, two species of Apusozoa (An-
cyromonas sigmoides and Amastigomonas bermudensis)
were used as outgroups. Three phylotypes TAGIRI-25,
TAGIRI-26 and TAGIRI-27, were placed within the
radiation of Ichthyosporea with 80% bootstrap support,
and TAGIRI-26 and TAGIRI-27 were closely related to
each other. Specifically, TAGIRI-25 clustered with the
clam parasite Pseudoperkinsus tapetis and the amphipod
parasite Sphaeroforma arctica with 100% bootstrap
support. This is the first report of uncultured environ-
mental clones from Ichthyosporea. The Ichthyosporea
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Fig. 5 The maximum-
likelihood distance tree of
Opisthokonta (48 taxa/1575
sites) reconstructed under a
TrN nucleotide substitution
model incorporating the
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(I=0.3188) and a discrete
gamma distribution (four
categories) (parameter
a=0.5759). Two species of
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are known to infect a variety of animals, including hu-
mans. If the organisms of Ichthyosporean phylotypes
found in the present study are indeed parasites, their life
cycle (especially in the sediment) should be elucidated.
Three phylotypes TAGIRI-22, TAGIRI-23 and TAG-
IRI-24 were placed within the fungal lineage with 100%
bootstrap support. TAGIRI-22 was most dominant in
terms of numbers of clones (15.8%) and affiliated with
Ascomycotan species, such as Penicillium and Aspergil-
lus. Because this phylotype was also closely related to
AT2-4 retrieved from hydrothermal sediment at the
Mid-Atlantic Ridge (López-Garcı́a et al. 2003), TAG-
IRI-22 and AT2-4 may be Ascomycotan fungi and be
ubiquitous in anoxic hydrothermal sediment. On the
other hand, two other phylotypes of fungi TAGIRI-23
and TAGIRI-24 could not be attributed to well-defined
phylogenetic groups. It is likely that they belong to

either Chytridiomycota or Zygomycota. (The phyloge-
netic positions of species belonging to Chytridiomycota
and Zygomycota were unstable within the fungal line-
age.) Three phylotypes of Metazoa TAGIRI-19, TAG-
IRI-20 and TAGIRI-21, were positioned within the
lineages of Mollusca (Mytilidae), Copepoda and Chor-
data, respectively (all 100% bootstrap support). TAG-
IRI-20 was relatively abundant in the numbers of clones
(13.3%). As we could not identify any multicellular
animals in the sediment sample under light microscopic
observation, TAGIRI-19 and TAGIRI-21 possibly
originated from larvae, gametes or dead tissue of the
respective animals. No megabenthos was found at
‘Tagiri’ site at 200 m depth, and therefore it is highly
likely that the organisms (larvae or gametes or dead
tissue) of TAGIRI-19 and TAGIRI-21 come from other
environments.
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likelihood distance tree of
major eukaryotic groups (37
taxa/1401 sites) reconstructed
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Possibly novel lineages at a high-taxonomic level

Simulation studies indicate that ML method is signifi-
cantly robust to ‘long branch attraction (LBA)’,
whereby highly diverged sequences are artifactually at-
tracted to one another (Swofford et al. 2001). Thus, not
only an NJ tree (Fig. 6) but also an ML tree (Fig. 7) was
constructed for the global eukaryotic phylogeny, be-
cause several sequences included in the analysis were
extremely divergent. The diplomonad Giardia intestinalis
was used to root the trees. The phylotype TAGIRI-28
deeply branched in the trees. Based on the chimera check
and partial treeing analysis, it is unlikely that the se-
quence of TAGIRI-28 is of chimeric origin. Further-
more, because the sequence is not divergent, its
phylogenetic status is most likely not caused by a phy-
logenetic artifact such as LBA. Although we can not
exclude the possibility that TAGIRI-28 is derived from a
described, but as yet unsequenced eukaryote, it is rea-
sonable to assume that this phylotype truly represents a
novel eukaryotic lineage at the high-taxonomic level.

The phylotype TAGIRI-29 branched with the already
published phylotype CCI7 from the anoxic sediment–
water interface of the great Sippewisset salt marsh
(Stoeck and Epstein 2003) with 100% bootstrap value,
and this monophyletic lineage was not specifically re-
lated to any known eukaryotes at the high-taxonomic
level. Stoeck and Epstein (2003) have suggested that
CCI7 is closely related to CCI31 and CCA38 retrieved
from the same environment, but our phylogenetic
analysis did not support this affiliation. Instead, the
independent lineage comprising of CCI31 and CCA38
deeply branched in the NJ tree (Fig. 6) and clustered
with Alveolata in the ML tree (Fig. 7) (with no boot-
strap supports). Like TAGIRI-28, TAGIRI-29 is un-
likely to be a chimeric product. Although the sequence
of TAGIRI-29 is relatively divergent, the monophyletic
lineage of TAGIRI-29 and CCI7 is still deeply branched
in the ML tree. Thus, this lineage might represent a
novel eukaryotic group, although more taxon sampling
of known eukaryotes, especially protists, would be re-
quired. Furthermore, because both TAGIRI-29 and
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CCI7 were retrieved from anoxic environments, these
possibly novel eukaryotic organisms may be anaerobic
or anoxic-tolerant. TAGIRI-28 and TAGIRI-29 were
low in abundance (1.6% and 2.1%, respectively).

Comparison of eukaryotic diversity with those
of other environments

The sampling of clone libraries from the sediment
investigated in this study appeared to almost reach sat-
uration in spite of sequencing of only 252 clones (data
not shown), suggesting that the diversity of eukaryotes
at the research site is not so high, when compared with
other environmental surveys previously reported. (Of
course, it is probable that some phylotypes present could
not be retrieved due to problems associated with primer
selection and DNA extraction.) Remarkably, no phyl-
otype of ciliates was retrieved in the present analysis,
although many phylotypes of this group have been
identified from most other environments, including an-
oxic ones. Furthermore, we found no phylotypes
belonging to apicomplexans, Perkinsozoa, kinetoplast-
ids, bodonids, Acantharea and Polycystinea recovered
from deep-sea hydrothermal vents (Edgcomb et al. 2002;
López-Garcı́a et al. 2003) in our clone libraries. These
results, taken together with the occurrence of Phyto-
myxean and Ichthyosporean phylotypes lead us to con-
sider that the community composition of eukaryotes in
the sediment of the ‘Tagiri’ site appears to be unique
despite a small fraction of phylotypes obtained in the
present study being closely related to those from other
anoxic environments (as mentioned above). Moreira and
López-Garcı́a (2003), have argued that parasitic protists
inhabiting the area around deep-sea hydrothermal vents,
such as Apicomplexa and kinetoplastids, are possibly
hosted by dense animal populations, and may cause
sudden massive mortality of these animals. However, the
ecological significance of the putative eukaryotic para-
sites found in the present study remains unclear. Efforts
toward their isolation, cultivation and infection testing
are necessary.
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