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Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy.
We propose a combination of soft-core potential energy functions and a variation of the diffusion equation
method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures.
The performance of the method was demonstrated by comparison with simulated annealing using the refinement
of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different
initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical
sense.

Introduction

Most nonlocal optimization methods for molecular structures
work by surmounting hurdles on the uneven potential energy
landscape and moving along the overall gradient toward the
global minimum. Probably the most popular approach is
simulated annealing,1 which reduces the size of barriers with
respect to the kinetic energy of the system. Other methods
would include potential energy annealing conformational search
(PEACS),2 which attempts to coax a system around bumps in
the energy surface by coupling it to an external potential energy
surface. One might attempt to smooth a surface by filling in
the energy hypervalleys.3-5 Several other methods temporarily
add artificial degrees of freedom,6-8 which can be seen as
smoothing the energy surface with respect to the initial,
physically real degrees of freedom. Some approaches are based
on the smoothing of a mean field potential energy surface.9-16

The strategy is more obvious in methods that apply smoothing
procedures directly, such as the deflation method17 and diffusion
equation method (DEM).18-22 In the last method, the diffusion
equation is solved analytically for potential energy surfaces and
the original potential energy surface is restored by a time reversal
process. This method has been successfully applied on difficult
test problems in global optimization,20 but is not easy to
implement for general interaction functions used in structure
refinement and performs less well in the field of structure
optimization where steep slopes move the global minimum of
the smoothed energy surface far away from the actual global
minimum. In this case, only extremely slow restoration of the
original surface can guarantee good results. To specifically
address this problem, we have used a method where the extrema
of different terms in the energy function are maintained and
only their shape is modified during the smoothing process.
Although this does not guarantee that the global minimum will
be fixed during the smoothing process, it keeps it close to the
original position and the reverse process can be performed more
quickly. We have applied this approach to the modification of
a conventional molecular dynamics force field.23 As a test case,
we have considered the refinement of an undecapeptide with
respect to the potential energy and a set of experimental NMR
restraints.24 This problem is small enough to allow repeated

calculations but is sufficiently difficult to challenge current
optimization methods. It is also sufficiently well studied to
allow comparison with earlier work.2,5,8

Theory

We wish to modify the potential energy surface such that an
increase of a smoothing parametert reduces the barriers
separating minima and the system is able to cross them easily.
Piela et al.18 introduced the idea of applying the second-order
differential operator equation, which describes heat and diffusion
processes to the potential energy function.

The solution of this operator equation when applied to a function
depends on a new variablet, which controls the modification
of the function. As seen directly from the differential equation,
the function changes with a change oft depending on the local
curvature. This has the effect that barriers “melt” and minima
gradually “fill up” when t increases.
We followed this idea of modifying potential energy surfaces

according to their local curvature, but in contrast, the diffusion
operator was not applied to the total potential energy function.
Instead, separate energy terms were smoothed independently.
Improper dihedral angle, bond length, and bond angle changes
are less important for overall conformational changes so these
terms of the interaction function were not smoothed. On the
other hand, contributions from dihedral angle and nonbonded
interaction terms appeared to determine the probability of
conformational transitions and therefore were replaced by
smoothable functional forms. Piela et al.19 derived and sum-
marized analytic solutions for different functional forms includ-
ing Gaussian functions, which are most suitable for this purpose.
The well-known solution when the operator equation (1) is
applied to a Gaussian function of the form
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Van der Waals Potential Energy Term. To make large
local rearrangements possible, it is often useful to replace
Lennard-Jones interaction functions by functions with finite
values at zero distance. These interaction functions introduced
by Levitt25 are referred to as soft-core potential energy
functions.26-28 Smoothing the energy hypersurface speeds up
the system’s convergence to the global energy minimum, since
the size of barriers surrounding local minima is reduced and
less time is spent in order to overcome these barriers. This led
to the use of a switching function based on whether a distance
was greater than the distance of minimum interaction energy,
r0,

where

with B ) 2r0-2 describing the width of the function andVij
0 the

potential energy at the distance of minimum energy in the
original Lennard-Jones form. The soft-core interaction term of
(4) was given by

This function was chosen since it has a finite value,Vbarrier +
Vij
0, even when two particles completely overlap (r ) 0).

Expressions (5) and (6) are chosen such that the total energy
(4) is continuous and equal toVij

0 at r ) r0, has a continuous
derivative equal to zero atr ) 0 andr ) r0, and has a curvature
equal to - 4Vij

0r0
-2 at r ) r0 (if r approachesr0 from above).

During the smoothing process, the soft-core part of the
interaction function changes with the smoothing variabletnb
according to

and the Gaussian part of the interaction function according to

This choice implies thatVij
vdW(r;tnb) defined analogously to (4)

is continuous atr ) r0 and has a derivative with respect tor
that is equal to zero atr ) r0 for all tnb g 0. Moreover, we
have

We note, however, thatVij
soft(r;tnb) does not satisfy the diffusion

equation, whereasVij
Gauss(r;tnb) does.

Electrostatic Potential Energy Term. To model electro-
static interactions, we followed the same principle. Coulombic
interactions were approximated with three Gaussian functions
of type (8) centered at the origin (r ) r0) using a least-squares
fit in the range 0.3-1.2 nm, varying the three pairs of parameters
Vij
0 andB.
Dihedral Angle Potential Energy Term. Trigonometric

functions of the form

are often used to describe rotational barriers around a dihedral
angle, wherekφ is a scaling factor,n is the periodicity, andδ is
a phase shift.
Since the dihedral angle potential energy surface was

deformed independently of other potential energy terms, the
transformation of this potential energy function term could be
done in dihedral angle space. It can easily be shown that

is a solution of the diffusion equation for the trigonometric
function of the form

Thus, the diffusive dihedral angle potential energy term is given
by

We note that the location of the minima of each energy term is
not disturbed by the smoothing process, i.e., is not dependent
on t. Only the depth and local environment are changed. Figure
1 shows the effect of smoothing on a dihedral angle potential
energy function. The smoothing processes for the dihedral angle
term and nonbonded interactions are taken to be completely
independent. This allows one to use different rates for deform-
ing and restoring the energy contributions from each term.

Methods

All simulations concerned Cyclosporin A and were conducted
in vacuo using a leap frog integration scheme with a time step
of 2 fs. The SHAKE algorithm29was applied to constrain bond
lengths. All nonbonded interactions were evaluated without
truncation of forces beyond a cutoff radius. An extra term was
included in the potential energy function to force the molecule
to satisfy a set of 57 distance restraints, experimentally
determined by NMR.24 This term was harmonic with respect
to distance restraint violations with a force constant of 4000 kJ
mol-1 nm-2. Nine distinctly different conformations (class
1-9) that satisfy experimental restraints30 were used as initial
structures in the simulations. For each of the nine structures,
ten calculations were performed with different initial velocity
assignments.
Interaction parameters for the Gaussian-based functional form

were obtained by a least-squares fit to GROMOS interaction
functions with the GROMOS 37D4 vacuum force field param-
eters.23 The fit was performed for distances in the range 0.3-
0.9 nm for van der Waals interactions and in the range 0.3-
1.2 nm for Coulomb interactions.
In simulated annealing simulations, the initial velocities were

assigned according to a temperature of 1200 K, and within 100
ps simulation time, the temperature was lowered exponentially
to 300 K. In calculations using the diffusion equation to smooth
the energy surface, the atom velocities were assigned and kept
to a temperature corresponding to 300 K. The simulation length
was half the number of steps of the simulated annealing
simulations, using approximately the same amount of CPU time.
In both types of simulations, Berendsen’s weak coupling
method31 was used to control temperature. With the combina-
tion of diffusion equation-smoothing and soft-core potential
energy terms, the temperature coupling constantτT was 0.02

Vij
vdW(r) ) {Vijsoft(r) r < r0

Vij
Gauss(r) r g r0

(4)
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V(φ) ) kφ(1- cos(nφ - δ)) (10)

f(x;t) ) exp(-ω2t) cos(ωx- δ) (11)

f(x) ) cos(ωx- δ)

Vdih(φ;tdih) ) kφ(1- exp(-n2tdih) cos(nφ - δ)) tdih g 0
(12)
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ps. In simulated annealing simulations, the system was coupled
more tightly withτT equal to the integration time step.
In calculations using the diffusion equation and soft-core

interaction functions, in the first 2500 steps the smoothing
parametertnb was changed linearly fromtnb ) 0 nm2 to its
maximal valuetnb

max. To avoid another adjustable parameter in
the simulations, the value oftdih was set totdih ) 0.1tnb. Then
in the reverse process,tnb and tdih were exponentially lowered
to tnb ) 10-5 nm2 andtdih ) 10-6, respectively. All simulations
were performed using the same soft-core barrier heightVbarrier
) 50Vij

0.
All final structures were relaxed by a short MD simulation

of 5 ps in the original GROMOS 37D4 force field. The SHAKE
algorithm was not used to hold bond lengths constant. Subse-
quently, the potential energy was minimized with 10000 function
evaluations in a quasi Newton minimization method or stopped
when the total gradient was less than 10-6 kJ mol-1 per step.

Results and Discussion

Figures 2 and 3 summarize the results from ten simulations
for each of the nine starting structures using both simulated
annealing and diffusive soft-core potential energy functions. Due
to the heuristic nature of both search methods, overall perfor-
mance can only be judged by performing numerous simulations
starting from different conformations.
Figure 2 shows the initial and final energies for each starting

class and compares the two approaches. Both optimization
methods find structures of lower energy than the starting
conformation, but in simulated annealing simulations results are
quite predetermined by the starting conformation. In simulations
with diffusive soft-core potential energy functions, conforma-
tions with energies close to the lowest energy are found starting
from almost every structure. In many cases this requires
crossing extremely high energetic barriers, which is, despite high
temperatures, often impossible with simulated annealing. There-
fore, final structures are quite similar to the starting structure
(and thus to each other) when surrounding energy barriers are
high. In fact, this is the case for most of our classes of starting
conformations of Cyclosporin A.
The ability to cross conformational barriers or to lose memory

of the starting conformation can be detected by comparing
structures to some reference structure. We have used the starting
conformation of class 9 as reference, as it is the lowest energy

starting structure. Figure 3 shows the root mean square
positional difference of all atoms for each final structure and
this particular conformation. The small clusters of conforma-
tions in Figure 3a show the lack of ability to cross conforma-
tional barriers in the simulated annealing protocol used. Distinct
clusters of points (e.g., class 6) indicate small conformational
spread.
In contrast, calculations using a smoothed energy surface

show a much greater conformational spread, even within classes
(Figure 3c). This is due to the effect of making bigger parts of
conformational space accessible when the potential energy
surface is deformed. Unfortunately, simulation time is often
not long enough to allow the system to settle down in low-
energy regions. Energy barriers are built up gain by reversal
of the smoothing process and conformations may be trapped in
areas of high potential energy. On the other hand, a bigger
accessible space makes transition between low-energy confor-
mations more likely. As a result, for each class of starting
conformation, except when starting from class 6, in at least one
out of ten diffusive soft-core potential simulations, low-energy
conformations structurally close (RMSD< 0.12 nm) to the class
9 conformation are found.
We tried to optimize the balance of making conformational

space available and being able to find low-energy regions in
this expanded space within a typical simulation time of 50 ps.
Simulations were repeated for smoothing parameterstnb

max )

Figure 1. Smoothing of a dihedral angle term with the diffusion
equation. Each curve showsVdih(φ;tdih) for a different value oftdih as
labeled. The original potential energy is given bytdih ) 0. Parameter
values aren ) 6 andδ ) 0.

Figure 2. Energies of refined structures. The filled diamonds show
the energies of the minimized starting structures: (a) simulated
annealing; (b) diffusive soft-core potential energy functions,tnb

max )
1.0 nm2. Each column shows results from a single starting structure.
Open circles show the final energy of each calculation from the
particular starting structure.

5928 J. Phys. Chem. A, Vol. 101, No. 33, 1997 Huber et al.



0.1, 1, 2, 3, and 5 nm2. With tnb
max) 0.1 nm2, energetic barriers

between low-energy conformations still seemed to be too high
to be crossed (Figure 3b). A smoothing parameter oftnb

max ) 1
nm2 was generally high enough to reduce energy barriers and

allow them to be overcome. Using smoothing parameterstnb
bigger than 2 nm2 did not result in any further improvement.
Although we empirically optimized simulation parameters for

the optimization protocols, there is no doubt that there is still
room to improve results for each method. One could put
forward the trivial argument that the temperature was not high
enough in the annealing calculations and the spread of confor-
mations could have been arbitrarily large. This of course would
require a comparable increase in the cooling time. The intention
here was to compare two methods using reasonable protocols
and similar computational time. It genuinely appears that even
with optimally tuned simulated annealing parameters the method
would not perform as well as with dynamics simulations using
diffusive soft-core potential energy functions. One reason is
that high barriers, steep slopes, and narrow valleys are significant
features of molecular potential energy surfaces. In this situation,
simulated annealing often fails when the simulation time is
limited. When the system is not sufficiently hot, the simulation
time is often not long enough to allow barrier crossing. On
the other hand, when the temperature is high enough to cross
high energy barriers easily, the system is often unable to find
the narrow value of lowest energy within the cooling time.

Conclusions

The use of diffusive soft-core potential energy functions is a
powerful method for molecular structure refinement with good
overall performance and applicable to molecular systems without
restrictions. Performance of optimization methods, however,
is highly dependent on the optimization problem, and each
method shows strengths and weaknesses.
This method’s strength is the good performance in optimiza-

tion problems with high energy barriers in which other
optimization methods often fail. High energy barriers often
involve steep slopes and narrow valleys, and since in this method
the energy surface is deformed proportional to its local curvature,
these parts of the potential energy function are affected most.
This is especially important in the area of biomolecular modeling
where huge energetic barriers often separate distantly close
minima due to the dense packing of atoms.
A drawback of this approach is that, unlike the diffusion

equation method, the deformed potential energy surface no
longer has a single minimum for large values of the smoothing
parameters. Therefore a combination with other heuristic search
methods, such as molecular dynamics, is still useful. While
the diffusive soft-core method is heuristic and does not guarantee
good results in a single calculation, it displays good performance
in comparison with other well-established heuristic methods such
as simulated annealing.
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