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1 Introduction 
The evolutionary analyses of a protein’s history has often seem irrelevant to protein structure 
prediction. Indeed, a protein’s ability to fold will depend entirely and only on the underlying physics 
which is dictated by the amino acid sequence and its environment. It will not make any difference 
whether the protein sequence was designed de novo, resulted from random shuffling experiments or has 
evolved naturally. 

However for the purpose of protein structure prediction, the evolutionary context of a protein provides 
an important additional layer of information that one can employed to increase success. In the most 
simplistic form, a method may produce predictions from average (or consensus) properties from a 
family of related proteins instead of using a single member. Noise due to variations in individual 
proteins is then reduced in the prediction and accuracy increases. Most if not all of prediction methods 
today take advantage of this fact and use so-called profiles from homologous sequences (for examples 
see chapters xx), some methods even go further and average over similar but not necessarily 
homologous protein structures (chapter yy). 

In this chapter we review some of the ideas of more sophisticated evolutionary information in protein 
sequences that are important to structure and their application to protein contact prediction. In the next 
section the general methods for using multiple sequence alignments to make contact predictions are 
covered. In general it is found that predictors, while performing well above chance levels, will make 
predictions that are not in fact physically realizable. Hence filtering methods are often used to improve 



predictions, and these are described in section 3. It is fair to say that the contact prediction literature has 
suffered from predictors being tested on different data sets using varying measures of predictive 
quality, making comparison difficult. For this reason blind tests of methodologies on a common data 
set such as the CASP experiments are invaluable. Section 4 begins by giving the more common 
measures of predictive quality and then presents results of the state of the art predictors participating in 
the most recent round of CASP experiments.  

2 Sequence based approaches to contact prediction 
A variety of approaches have been taken to contact prediction using multiple sequence alignments 
(MSA’s) and other information. At the most fine grained level a multiple sequence alignment is 
constructed for a given protein and the information in pairs of columns is used to predict which 
residues are in contact. The fundamental assumption is that for residues that are in contact the 
corresponding columns will be in some way more highly related to each other than for those residues 
that are not.  

Several measures of the relatedness of MSA columns have been developed. One approach is to look for 
correlated mutations in the MSA [1]. The idea is that if residue substitutions in one column of a MSA 
are correlated to those in another, then one reason for this may be that the residues are physically close. 
For instance, substitutions might occur in pairs so as to preserve the total charge in a region and so 
maintain the structural integrity of the protein. To calculate a mutational correlation score for a pair of 
columns in an MSA a measure of the physiochemical similarity of any pair of residues is required, and 
for this the McLachlan matrix [2] is often used. For each column of the MSA of n sequences, an n by n 
matrix is constructed with entries (i,j) being the McLachlan interchange score for the i th and jth residues 
of the column. The correlation mutation score between two columns is then calculated as the standard 
Pearson correlation between the entries of their matrices. Hence the correlation is found between the 
physical similarity scores for residues substitutions at pairs of sites on the protein. A weighting scheme 
is also used in the correlation calculation to favour those row pairs of the MSA that are least similar. 
Column pairs are then ranked according to their correlated mutation score, those with high scores 
deemed as being more likely to be in contact. Formally, the correlation score between columns i and j 
is given as 
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Where N is the length of the sequence alignment, wkl is a weighting function that measures the 
similarity between rows k and l of the alignment, sijk is the McLachlan interchange score for the jth and 
kth residues in column i, and is  and i are the mean and standard deviation of the interchange scores in 

column i. 

Rather than using a general “physical similarity”  score, research has also gone into exactly what 
physical factors effect compensatory mutations, and to look for biophysical complementarity 
principles. For a given physical quantity, such as side chain charge, the correlation between the values 
of this quantity for pairs of residues in two columns may be calculated [3, 4]. In this way it has been 
found that for residues in contact compensatory mutations are highly correlated with side chain charge. 
In other words for residues in contact, the sum of their side chain charges tend to be preserved if the 
pair mutate. In contrast it has been found that there is little correlation between side chain volume and 
compensatory mutations. 

At the simplest level the likelihood of a given residue pair being in contact may be predicted based on 
empirical observations of how often such a pair has been observed to be in contact in other proteins of 



known structure. Contact likelihood tables for all residue pairs based in a set of 672 proteins of known 
structure have been constructed [5], and these have been used to construct a contact likelihood score for 
columns of an MSA by summing the likelihoods of all residue pairs in the columns. Similarly, Markov 
models have been built of mutations for residues in contact [6], and these may also be used as a (crude) 
predictor of when residues are in contact.  

On a more abstract level, information theory has been applied to contact prediction from MSA’s [7-9]. 
Here the mutual information between two columns of a MSA is used as estimate of contact likelihood 
and is defined as 
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Where ai and aj are the amino acids found in columns i and j, Pai is the observed relative frequency of 
amino acid ai in column i, similarly for aj in column j, and Pai,aj is the observed relative frequency of the 
pair (ai,aj). This is based on the definition of entropy from information theory, and gives an estimate of 
the degree to which identity of one amino acid in one column allows us to predict an amino acid in 
another. The column pairs with the highest degree of mutual information are then those predicted to be 
in contact. 

Many of these measures have also been useful in predicting the function of groups of residues [7, 10]. 
While each approach has been moderately successful in that they will usually predict contacts at a level 
significantly above random chance, the accuracy of the predictions is generally quite low and certainly 
not high enough to enable accurate reconstruction of the three dimensional structure of a protein from 
its sequence. One essential problem is that phylogenetic relationships are disregarded and these can 
lead to strong correlations between physically distant residues. Several attempts have been made to 
separate out phylogenetic covariation [4, 9, 11-13], but predictive accuracy remains in need of 
improvement.  

Interest has hence turned to combining prediction methods and other information to improve 
predictions. Other sources of information include predicted secondary structure [14], residue sequence 
separation, sequence length, residue conservation, hydrophobicity of residues, predicted disulphide 
bridges and conservation weight. While each of these is not a good predictor of protein contacts in 
itself, the idea is that by combining relatively poor predictors a better predictor may be made1. 
Windows around the residue pairs being predicted on have also been shown to improve accuracy. Here 
information is also provided such as correlation scores, residue frequencies in columns of the MSA and 
predicted secondary structure on the residues near to the pair being scored. This improves prediction 
accuracy since if two residues are in contact then it is also likely that those residues around them will 
also be in contact and correlate in some way. 

Once a set of measures has been chosen, the problem then becomes how to combine the information 
into a single prediction score for a given protein and residue pair. Virtually every type of learning 
algorithm has been applied to the problem such as neural networks [16, 17] [18-20], self organizing 
                                                 
1 In the theory of boosting (15. Shapire RE, The boosting approach to machine learning: An 
overview. MSRI Workshop on Nonlinear Estimation and Classification. 2002: Springer.) it has been 
proved that weak predictors may be combined to provide a predictor that is significantly more accurate 
than any of the weak predictors, though the boosting method appears not to have yet been exploited in 
contact prediction.  

 

 



maps [21], support vector machines [22-24], and hidden Markov models (HMMs) [25] [26, 27]. 
Typically an algorithm will learn the problem on a training set of data, and then be tested on an 
independent test set.  

Each of these learning methods has its own advantages and disadvantages, and it might be said that 
training a learning algorithm is something of a black art. Some claim that neural networks have a 
tendency to over-train, that is to fit the training data to closely and hence lose their ability to generalize 
on unseen data sets, though this can be to some extent avoided by the use of a validation set to halt the 
learning during training, while support vector machines suffer less from this problem. Also, support 
vector machines are sometimes said to be more tolerant of noisy data [28]. Balanced training is often 
favoured, that is to use equal numbers of each category of data in training [18, 20], while others have 
obtained better results training with the proportions that the categories naturally occur in [19]. 
Encoding of inputs is certainly important. In one study of predicting disulphide connectivity it was 
found that by taking the log of the sequence separation (with other inputs) of the residues the predictive 
accuracy of the SVM improved by 4% over simply using the linear sequence separation [29], and 
choice of window size varied the predictive accuracy by up to 10% (larger window sizes were also 
found to increase accuracy in [21]). In general, training a good predictor involves much testing of 
encoding schemes and experimenting with data as well a little good luck. 

3 Contact filtering 
In many cases a contact predictor will incorrectly predict residue pairs to be in contact. For this reason 
contact filtering is often applied to a given set of predicted contacts, the aim being to remove those 
predicted contacts that are in some way physically unrealizable. 

The simplest and perhaps most effective method of filtering is contact occupancy. For a given residue 
in a protein sequence there is a limit to the number of residues with which it may be in contact. This 
number will vary according to the type of residue, the secondary structure around the residue, whether 
the residue is exposed on the surface of the protein and so on. By examining proteins of known 
structure, tables of the average number of contacts a given residue of a particular class has may be 
created. Linear regression model [30], support vector machine [31] and neural network [32] approaches 
to predicting contact occupancy have also been developed. A list of predicted contacts may then be 
filtered by removing those pairs for which one or both of the residues is in predicted to be in contact 
with more than the average for its class. Significant improvements of up to 4% in predictive accuracy 
have been found using this methodology [20, 33]. Similarly, for any pair of residues that are in contact 
there is a limit to the number of residues that may be in contact with both of the residues, and this may 
also be used as a filter [27]. 

Bootstrapping may also be applied to assess the stability the prediction of contact pairs. Olmea and 
Valencia performed bootstrapping experiments by excluding 10% of sequences in the alignments given 
to their prediction method [33]. By excluding predicted contact pairs that occurred in less than 80% of 
bootstraps a 20% improvement in accuracy was obtained. 

More detailed consideration of the (predicted) secondary structure can also be applied. For instance, 
within an helix, the i th residue should only be in contact with residues i+4 and i-4; a residue can not be 
in contact with residues on opposite sides of a helix; and within a single strand of a -sheet only 
adjacent residues should be in contact [27]. A more direct method to checking the physical realisability 
of contact maps is to align fragments of a predicted contact map to template contact maps, where the 
templates are fragments of contact maps of proteins of known structure. The predicted contact map 
fragment then becomes the contact map of the most closely aligned template [27]. However, care needs 
to be taken with the definition of contact and the application of these rules and maps since, say, a 4Å 



cutoff for contact will give a very different pattern of contact than that for an 8Å cutoff. 

5 Evaluating contact predictors and the CASP6 experiment 
There are many definitions of residue contact used in the literature. Some use the C-  distance, i.e. the 
distance between the  carbon atoms of the residue pair [34], while others prefer the C-  distance [20, 
35] or even the minimal distance between the heavy atoms of the side chain or backbone of the two 
residues [36]. The most common minimum separation used to define a contact pair is 8Å. It is also 
usual to exclude residue pairs that are separated along the amino acid sequence by less than some fixed 
number of residues, since short range contacts are less interesting and easier to predict than long range 
ones.  

For a given target protein, the prediction accuracy AN on N predicted contacts is defined to be AN = 
Nc/N where Nc is the number of the predicted contacts that are indeed contacts for a given minimum 
sequence separation. Typically N is taken be one of L, L/2, L/5 or L/10 where L is the length of the 
sequence. For most proteins, the actual number of contacts (using the 8Å definition) is in the range L 
and 2L. It has become relatively standard to report results on the best L/2 predictions with a maximum 
distance of 8Å between C-  atoms (C-  for glycine), with a minimum sequence separation of 6. This 
standardization is in large part thanks to the CASP ([37]) and EVA ([38]) protein structure prediction 
blind tests, and has been invaluable in enabling comparison between predictors. 

The prediction coverage is defined to be Nc/Tc, where Tc is the total number of contacts pairs for the 
protein. The random accuracy is given by the fraction of all residue pairs that are in contact (for a 
given sequence separation), and gives a measure of the probability of picking a pair to be in contact by 
chance alone. The improvement over random is then prediction accuracy divided by the random 
accuracy, and gives a measure of how much better than chance the predictor performs. This can be a 
useful measure since the number of contacts can vary widely between proteins, and prediction accuracy 
may be artificially high due to an unusually large number of contacts in a given protein.  

Another measure that is sometimes used is the weighted harmonic average distance [39] 
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Where the sum runs over 15 distance bins in the range 0 to 60Å, di is the upper bound of each bin, 
normalized to 60, Pip is the percentage of predicted pairs whose distance is included is included in bin i, 
and Pia is the same percentage for all pairs. The harmonic average is designed to reflect the difference 
between the real and predicted distances of residue pairs: when the average distance between predicted 
residue pairs is less than the average distance between all pairs in the structure then Xd>0, though 
interpreting the meaning of a particular value of Xd can be difficult. 

Prediction accuracy and coverage are the most commonly reported measures in the literature. However, 
the choice of sequence separation can greatly affect the prediction accuracy since residues that are 
close on the sequence are more likely to be in contact. Choosing a minimum sequence separation of 12 
instead of 6 may well reduce the accuracy by 50% or more depending on the characteristics of the 
predictor. Similarly, the accuracy is usually strongly dependant on the number of predictions made. A 
predictor that has an accuracy of 0.3 on its best L/5 predictions may well drop to 0.15 on its best L 
predictions. Also, a contact predictor that does relatively well on one data set may predict poorly on 
another, perhaps due to there being many proteins in the first data set for which several homologous 
structures are known. For these reasons it can be difficult to evaluate the relative performance of 
contact predictors in the literature.  



To overcome these problems standardized blind tests of protein structure and protein contact predictors 
have been introduced. The Critical Assessment of Techniques for Protein Structure Prediction (CASP) 
experiments are run biannually and involve releasing over several months the sequences for a set of 
proteins for which the structure has been solved, but are not yet publicly available [32, 37]. Groups 
from around the world then submit their predictions, and these are independently evaluated by a team 
of experts and the results published. The experiment also includes an automated section where 
sequences are submitted to prediction servers and predictions returned without human intervention. 
Similarly, the EVA project provides a continuous, fully automatic analysis of structure prediction 
servers [38]. Both EVA and CASP include sections for comparative 3D modeling, fold recognition, 
contact and secondary structure prediction. 

In the 6th round of CASP in 2004 there were 87 target proteins released, and 16 groups competed in the 
contact prediction category, 5 of which were registered as automated servers [37]. Unfortunately, the 
only published evaluation performed was for the 11 hard new fold (NF) targets for which additional 
and structural information was not available [37].  These targets are not representative of the wide 
range of possible protein folds, and with such a small sample set it is difficult to evaluate the 
effectiveness of each contact predictor accurately. Fortunately the raw prediction scores for each 
contact predictor are available from the CASP6 web site2, and so we can present results for the full set 
of targets. 

In Table 1, average accuracy and coverage results are shown for the contact predictors that submitted to 
CASP6. The data shown is for the best L/2 predictions with a minimum sequence separation of 6 
residues. The tables are separated according to the target type. Not all predictors submitted for all 
targets, and so the averages presented are over those proteins for which a prediction was submitted. The 
number of targets predicted by each group is also shown. For most purposes, accuracy is more 
important than coverage, since the aim is to get a number of high quality contact predictions.  

Several groups attained accuracy of 20% or better on most of the classes of protein. Here we emphasize 
those that do not involve 3 dimensional modeling, or in which 3 dimensional modeling incorporates a 
contact predictor. For more information on the predictors, see also the CASP6 methods abstracts 
available from http://predictioncenter.org/casp6/abstracts/abstract.html 

RR100 Baker [37, 40]: The Baker predictor is particularly interesting in that while it takes a whole 
structure 3D modeling approach, a contact predictor is integrated into the structure building for fold 
recognition targets.  The approach to contact prediction is to train several neural network on the 
predictions made by a set of 24 protein (3D) structure predictors that participated in recent 
LIVEBENCH experiments [41]. For a given residue pair, the principle input to a neural network is the 
ratio of the number of servers that predict the residues to be in contact (contact meaning closer than 
11Å), along with other inputs such as secondary structure prediction and amino acid property profiles. 
Ten neural networks were trained and validated on different subsets of the same training set. For 
prediction, the average score of the 10 trained networks is taken, and the highest scoring residue pairs 
taken as predicted contacts. The consensus contact predictor is then used as an indictor of distant 
contacts that should be present in the de novo predicted models.  

www.jens-meiler.de/contact.html  

                                                 
2 CASP6 website http://predictioncenter.org/casp6/Casp6.html 



All targets Comparative modelling targets
group #submitted accuracy coverage Xd #submitted accuracy coverage Xd

av stddev av stddev av stddev av stddev av stddev av stddev
RR011 MacCallum 83 15.5 8.4 4.4 2.5 7.4 3.3 41 15.0 8.0 4.2 2.3 8.1 3.3
RR012 GPCPred 82 19.3 11.5 6.9 4.6 9.3 3.8 40 21.0 12.1 6.2 3.2 10.5 3.4
RR018 Baldi 31 33.6 15.3 10.7 9.2 14.1 4.7 14 32.0 16.0 11.7 12.6 13.7 5.1
RR019 Baldi-server 85 36.8 17.3 10.0 9.0 15.4 5.0 42 36.2 15.5 9.9 8.8 15.9 4.6
RR088 Bystroff 34 13.4 11.7 6.4 8.2 5.6 4.8 11 17.0 13.9 9.7 12.3 7.0 3.8
RR089 KIAS 85 15.3 13.3 3.2 2.5 7.3 4.2 42 15.0 10.1 3.3 2.3 7.8 3.8
RR100 Baker 83 40.1 22.2 19.9 14.4 15.8 8.0 41 52.1 20.8 24.0 15.2 20.0 7.2
RR166 SAMT04-hand 43 20.8 11.8 6.3 3.4 9.5 4.3 30 23.3 12.5 7.0 3.5 10.7 4.0
RR185 Huber-Torda 75 38.3 30.3 17.0 18.9 13.8 10.2 41 57.5 25.2 24.5 19.1 20.3 8.3
RR301 rostPROFcon 85 28.3 13.5 13.5 9.4 12.7 4.8 42 31.3 14.4 13.3 9.9 14.2 5.0
RR327 Hamilton-Huber-Torda 65 24.0 16.2 5.6 3.8 10.7 5.9 34 26.3 14.4 6.6 3.7 12.4 5.1
RR348 Distill 81 9.1 7.8 5.9 9.4 5.0 3.8 41 8.8 7.9 6.5 11.9 5.3 3.3
RR361 karypis 74 14.7 11.9 4.6 4.5 10.4 3.8 34 16.6 14.5 4.7 4.4 11.6 3.6
RR491 cornet 72 4.7 6.3 1.0 1.4 7.1 4.1 36 5.2 7.2 1.0 1.3 7.2 4.6
RR545 cracow.pl 19 8.8 6.4 2.4 1.8 3.4 3.7 8 9.3 6.0 2.2 1.8 5.1 2.8

Fold recognition targets New fold targets
group #submitted accuracy coverage Xd #submitted accuracy coverage Xd

av stddev av stddev av stddev av stddev av stddev av stddev
RR011 MacCallum 31 16.4 9.1 4.9 2.9 6.6 3.4 11 14.4 7.3 3.9 1.8 6.7 2.4
RR012 GPCPred 31 16.6 9.9 7.8 5.9 7.6 3.9 11 20.6 11.5 7.0 4.7 9.6 3.3
RR018 Baldi 14 31.6 12.9 9.6 4.7 13.9 4.4 3 50.2 12.3 10.8 4.5 16.6 1.8
RR019 Baldi-server 32 35.8 19.6 11.2 10.3 14.4 5.3 11 41.7 16.2 6.6 3.7 16.5 5.2
RR088 Bystroff 18 12.8 10.8 4.8 4.4 5.5 5.3 5 8.0 5.7 4.7 4.3 2.8 2.9
RR089 KIAS 32 16.3 17.8 3.4 3.1 6.8 5.0 11 13.7 7.0 2.2 1.2 6.9 2.8
RR100 Baker 31 32.0 16.9 18.1 12.7 12.7 6.8 11 18.3 10.7 9.7 8.0 8.7 4.3
RR166 SAMT04-hand 9 12.2 6.7 4.0 2.6 5.5 3.6 4 21.6 2.2 6.1 1.4 9.9 1.9
RR185 Huber-Torda 29 15.3 17.8 8.7 15.3 5.9 6.2 5 14.5 7.3 4.3 1.4 6.9 3.4
RR301 rostPROFcon 32 25.8 13.1 14.6 9.8 11.1 4.7 11 24.2 6.5 10.8 4.3 11.4 2.1
RR327 Hamilton-Huber-Torda 22 21.7 18.1 5.1 4.2 8.7 6.5 9 20.5 16.1 3.5 2.1 9.6 5.6
RR348 Distill 29 9.7 8.5 5.8 6.5 5.0 4.6 11 8.5 4.1 4.0 2.2 4.1 3.0
RR361 karypis 30 13.6 9.3 4.7 4.7 9.5 3.6 10 11.7 7.4 4.0 3.8 9.3 3.7
RR491 cornet 26 4.1 5.6 1.1 1.5 7.3 3.8 10 4.9 3.8 0.9 0.8 6.1 2.0
RR545 cracow.pl 9 8.4 7.0 2.6 2.0 1.7 3.9 2 8.2 3.9 2.3 1.0 3.6 2.5  

Table 1 Performance results from all contact predictors submitting to the CASP6 experiment for L/2 predicted contacts and 
a minimum separation of six residues along the sequence. 

 

RR185 Huber-Torda [42]: The Huber-Torda predictor is not a dedicated contact predictor but builds 
3D models by threading, which combines structure and sequence based terms for scoring alignments 
and models. Protein contacts are extracted from the models in a post processing step. It is interesting to 
observe the performance of a threading method that is based on a fundamentally different philosophy 
than protein contact predictors, since it shows limitations of the methods and may suggest new ways to 
improve overall performance. 

http://www.zbh.uni-hamburg.de/wurst 

RR019 and RR018 Baldi-server and Baldi [43, 44] : Similarly to the Baker group, the Baldi group 
predictors are whole structure 3D modelers that incorporate contact predictions. The energy function 
used in constructing the 3D coordinates incorporates a contact map energy term that “encourages”  the 
models to follow the predicted contact structure. The contact predictor is a 2D recursive neural network 
in which outputs feed back as inputs [45]. The recursive approach allows local information to be 
combined with more distant contextual information to provide better prediction. The inputs include the 
residue type of the pair being predicted, the residue frequencies in a MSA for the corresponding 
columns, the frequencies of residue pairs in the columns of the MSA, the correlated mutation score for 
the column pair, secondary structure classification and solvent accessibility. To make a contact map 
from the residue contact probabilities given by the neural network two approaches are taken. One 
method is to use a fixed threshold that maximize precision and recall on a test set, the other is a 



variable, band dependant, threshold determined by estimating the number of contacts in a band from 
the sum of all the predicted contact probabilities in that band.  

http://www.igb.uci.edu/servers/psss.html  

RR301 rost_PROFCon [18]: The rost_PROFCon server takes a neural network approach to contact 
prediction. For each residue pair, information in two windows of length 9 centered around each residue 
is encoded. For each residue position in the windows there are 29 inputs to the network including 
frequency counts of the residues types in the corresponding MSA column, predicted secondary 
structure and the reliability of that prediction, predicted solvent accessibility and conservation weight. 
Inputs are also included to give a biophysical classification of the central residues, as well as whether 
or not the residues are in a low complexity region.  Unusually for a contact predictor, inputs describing 
a window of length 5 half way between the pair of residues being considered are also included. In this 
window the same 29 input encoding scheme for each position is used as for the windows of length 9. A 
binary encoding scheme is used to describe the separation of the residues of interest. Finally, there are 
inputs describing global information such as the length (via a coarse grained binary encoding), the 
composition of amino acids and secondary structure for the protein. 

http://www.predictprotein.org/submit_profcon.html 

RR327 Hamilton-Huber-Torda [19]: The Hamilton-Huber-Torda server (recently named PoCM 
“possum” for Patterns of Correlated Mutations) is also a neural network predictor. The approach is to 
train the network on patterns of correlation. For a given residue pair, there are two windows of length 5 
centered on the residues. The correlated mutation score for all 25 pairs of residues between the 
windows are then calculated, the idea being that if the central residues are in contact, then adjacent 
residues are also likely to be in contact and so correlated. Inputs are also included for predicted 
secondary structure, biophysical classification of residues, a residue affinity score based on observed 
contacts in proteins of known structure, sequence length and residue separation. 

http://foo.maths.uq.edu.au/~nick/Protein/contact.html 

RR166 SAMT04-hand [26]:  Is a whole structure 3D modeler based on homology and templates. 

RR012 GPCPred [21]: Perhaps the most unusual approach to contact prediction in CASP6 is via 
“striped sheets” . For a given protein, a PSI-BLAST sequence profile is constructed, that is a 21 by L 
matrix that records the frequencies of amino acids in each of the positions of a MSA, where L is the 
length of the protein. From this matrix, windows of length w are extracted, w=1,5,9,25. During 
training, to reduce the number of dimension in the data in the windows, a self organizing map (SOM) 
[46] was created for each w, with output 3 integers in the range 0 to 5. Any profile window, or indeed 
central residue, could then be mapped to three integers by the trained SOMs. Genetic programming 
techniques were used to classify whether a pair of residues were in contact from the SOM outputs for 
the windows around them. 

http://www.sbc.su.se/~maccallr/contactmaps 

RR088 Bystroff [27]: The Bystroff predictor uses a threading method to predict contact maps. The 
target sequence is aligned to a set of template sequences with template contact maps, and target contact 
maps generated. Predicted contact maps are then scored using a “contact free energy”  function, and 
physicality rules applied such as those outlined in Contact Filtering section. 

http://www.bioinfo.rpi.edu/~bystrc/downloads.html 

 

In the CASP6 experiment it can be seen that the contact predictors that performed best were those that 



took a whole structure 3D modeling approach, though several “pure”  contact predictors also performed 
well. It is interesting to note that it is becoming more common for 3D modeler builders to rely on pure 
contact predictors to refine and select amongst models. No doubt as the pure predictors improve and 
the newer ones are incorporated into the 3D predictors, this will lead to both better 3D structure and 
contact prediction. 

For the pure contact predictors there are a number of general trends in accuracy that have been 
observed in the literature. Since most contact prediction methods rely on multiple sequence alignments, 
they tend to have a lower accuracy on proteins for which there a few homologues. Many predictors also 
report a decrease in accuracy for longer sequence proteins [1, 5, 21, 35], though there are exceptions 
[18, 19]. In some cases the average predictive accuracy may be reduced by up to a factor of 2 for long 
proteins. This may be due to the fact that for shorter proteins a randomly chosen residue pair is more 
likely to be in contact than for a longer one. Similarly, residues that are close on a sequence are more 
likely to be in contact and so are usually easier to predict than distant residues. Also, most predictors 
will significantly improve their accuracy if allowed to make fewer predictions. For instance, on a test 
set of 1033 proteins the PoCM predictor gave average accuracies of 0.174, 0.217, 0.27, 0.307 on the 
best L, L/2, L/5 and L/10 predictions, respectively [19]. This can be useful if only a few higher quality 
predictions are required. 

Predictive accuracies also tend to vary widely between secondary structure classes such as those of the 
SCOP classification [47]. Proteins classified as “all ”  are almost always poorly predicted in 
comparison to other classes. For example, the rostPROFCon server obtained an average accuracy of 
0.24 on all  proteins, but 0.35 and 0.36 on the other classes, on a test set of 522 proteins with 
minimum sequence separation of 6 residues and the best L/2 predictions taken [18]. This order of 
decrease in accuracy is typical of contact predictors and may be due to a number of factors. It may be 
that to maintain the structure of the -helices the kinds of substitutions possible are restricted, and so 
there is less information within the areas of the multiple sequence alignments corresponding to helices. 
Another problem may be the “windows” of residues approach that some of the predictors take. Since, 
on average, a single turn of a regular α-helix is 3.6 residues long, if two sequence distant residues 
contained in alpha helices are in contact, the residues adjacent to these residues are unlikely to be in 
contact. Hence one approach that might improve prediction on residues contained in alpha helices 
would be to use non-standard windows for these residues. For instance, for a window of size 5 around a 
given residue, the window would be taken as the 4th and 7th residues before and after the central 
residue. In this way it would be ensured that the residues in the window were on the same side of the 
helix.  

All of these factors in combination can lead to a wide variation in predictive accuracy. On a data set of 
1033 proteins, the PoCM predictor had an average accuracy of 0.174 on the best L predictions, with 
sequence separation of at least 5 [19]. Taking the subset of 64 proteins of class +  for which there 
were at least 100 sequences in the alignment, the average accuracy rises to 0.457 for the best L/10 
predictions. 

5 Conclusions 
Fariselli et al. [20] state that their goal is to obtain an accuracy of 50%, for then the folding of a protein 
of less than 300 residues length could be reconstructed with good accuracy (within 0.4-nm RMSD).  
While current contact predictors are still well short of this aim, predictive accuracy has significantly 
improved in recent years and has provided a valuable source of additional information in protein 
structure prediction.  

Interestingly, contact predictions are not yet widely used in combination with 3D structure prediction 



and only a few approaches use them routinely. However, 3D modeling approaches which do use 
evolutionary analyses to predict contacts in protein structures seem to also be the better performing 
ones.  One reason why contact prediction is generally omitted in fold recognition is simply algorithmic 
difficulties. Dynamic programming, as it is used in sequence(s)-sequence(s) alignment and 
sequence(s)-structure(s) alignment approaches, is not easily to reconcile with these residue pair 
distance constraints.  The problem does not exist with 3D prediction methods that use heuristic 
optimization methods instead. Well performing programs of this kind include Skolnick’s TASSER 
protein folding approach [48] and Baker’s fragment assembly approach Rosetta [40]. Even when it is 
not possible to integrate contact predictions into a structure predictor it may still be useful to use the 
predictions as a way of selecting the “best”  structure from a number of generated models. Our own 
experiments have shown that if a set of 3D models is ranked according to how many predicted contacts 
it is in agreement with, then the (known) real structure is ranked most highly against other predicted 
structures in almost all cases.  

As we have seen, a number of different methodologies for protein contact prediction have been 
developed in recent years. The question is then how can contact prediction be improved? One approach 
would be to attempt to construct a predictor that combines the best and most novel aspects of each. 
Most predictors have a similar core of inputs to a training algorithm such as predicted secondary 
structure, but each has some unique feature such as using the predicted solvent accessibility, a stringent 
contact filtering algorithm, or a totally novel encoding as in the stripped sheets approach of McCallum. 
Also, within 3D structure prediction, meta-servers that make predictions based on the predictions of 
other servers have proved highly successful in the CASP experiments, often out performing all other 
methods. As more contact predictors come online it will be interesting to see if meta-contact predictors 
will enjoy similar success. 
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