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Protein Contact Prediction Using Patterns of Correlation
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ABSTRACT We describe a new method for us-
ing neural networks to predict residue contact pairs
in a protein. The main inputs to the neural network
are a set of 25 measures of correlated mutation
between all pairs of residues in two “windows” of
size 5 centered on the residues of interest. While the
individual pair-wise correlations are a relatively
weak predictor of contact, by training the network
on windows of correlation the accuracy of predic-
tion is significantly improved. The neural network
is trained on a set of 100 proteins and then tested on
a disjoint set of 1033 proteins of known structure.
An average predictive accuracy of 21.7% is obtained
taking the best L/2 predictions for each protein,
where L is the sequence length. Taking the best L/10
predictions gives an average accuracy of 30.7%. The
predictor is also tested on a set of 59 proteins from
the CASP5 experiment. The accuracy is found to be
relatively consistent across different sequence
lengths, but to vary widely according to the second-
ary structure. Predictive accuracy is also found to
improve by using multiple sequence alignments
containing many sequences to calculate the correla-
tions. Proteins 2004;56:679-684.
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Key words: protein structure prediction; predicted
contact map; correlated mutation; neu-
ral network; CASP5

INTRODUCTION
Patterns of a Contact

A fundamental problem in molecular biology is the
prediction of the three-dimensional structure of a protein
from its sequence of amino acids. However, full molecular
modeling to find the structure is at present intractable,
and so intermediate steps such as predicting which resi-
dues pairs are in contact have been developed.

A variety of approaches to automated contact prediction
have been taken. In RNA structure prediction, correlated
mutation analysis was introduced with much success.'®
The same concept was then transferred to protein struc-
tures by Gobel et al. to predict contacts by finding corre-
lated interchanges in multiple sequence alignments.'®
Likelihood matrix methods have also been applied to the
problem.® There the idea was to use a large sample of
proteins of known structure, and use these to to estimate
the likelihood of contact of pairs of residues of given type.
Pairs of contacts are then predicted by taking a multiple
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sequence alignment and summing the likelihoods of all
residue pairs in the corresponding columns. Both the
correlated mutation and likelihood approaches performed
best when residues were local on the sequence, but tended
to perform poorly on longer sequences where the residues
were non-local on the sequence. Another approach to the
problem has been to train neural networks with various
encodings of multiple sequence alignments with other
inputs such as predicted secondary structure.'®%:1° These
tend to perform better over a wide range of sequence
lengths. Hidden Markov Models (HMM) combined with
association mining rule techniques have also been success-
fully applied to the problem.'® Filtering techniques where
physically impossible configurations are removed from
lists of predicted contacts have also been developed.®*¢

One approach to contact prediction that does not appear
to have been greatly exploited before is to looking for
patterns of contact. If two (non-adjacent) residues are in
contact then we would expect that the residues adjacent to
those residues are also in contact with high probability.
For instance, in an antiparallel B-sheet it might be that the
fifth residue is in contact with the fifteenth, the sixth with
the fourteenth, the seventh with the thirteenth, and so on.
More complicated patterns of contact might form in the
case of an a-helix in contact with a strand.

In the paper by Gébel et al.,'® contacts were predicted by
finding correlated interchanges of pairs of amino acids in
multiple sequence alignments. However, while the predic-
tion accuracy can be quite high for some proteins, gener-
ally predictions based on single pairs are poor. Here, we
use a neural network approach to find patterns of correla-
tion in combination with other inputs such as predicted
secondary structure. The main inputs to the neural net-
work are a set of 25 correlations mutations between two
“windows” of size 5 centered on the residues of interest.
Visualizing this set of inputs as a 5 X 5 matrix, each row
corresponds to a residue in the first window, each column
to a residue in the second window, and the entry in the
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matrix is the correlation between those residues as calcu-
lated in by Gobel et al. In the case of B-sheets, where two
residues are in contact in adjacent strands, we might hope
to see a pattern of high correlations on one of diagonals of
the matrix, and lower correlations elsewhere. Which diago-
nal the high correlations would occur on would depend on
whether the strands were parallel or antiparallel. The aim
then is to train a neural network to use this information to
predict when the middle two residues of the windows are
in contact.

MATERIALS AND METHODS
Definition of a Contact

In the following we consider two residues to be in contact
if the distance between their C, atoms is less than 8 A.
There are a variety of measures of residues contact used in
the literature. Some use the C, distance,® while others
prefer the Cy distance,'®'" or even the minimal distance
between the heavy atoms of the side-chain or backbone of
the two residues.'? Separations of less than 4.5 A are also
sometimes used to define contact. It is also common in the
literature to exclude residue pairs that are separated
along the amino acid sequence by less than some fixed
number of residues; values of 0, 3, 6, and 10 have been used
previously.1®1211.8 We chose only those pairs that are
separated by at least four residues. Tests on over one
thousand proteins showed that the C_, to C, average
distance between residues on the same helix, but sepa-
rated by exactly four residues, was 8.665 A with a stan-
dard deviation of 0.305 A (data not shown). And so the
majority of contacts that occur just because the residue
pair are on the same helix are excluded by using the
separation chosen here.

The input for our method to predict contact pairs is the
amino acid sequence for a protein.

Generation of a Multiple Sequence Alignment and
Predicted Secondary Structure

The Psipred®” version 2.3 software by D. Jones is used
to generate a prediction for the secondary structure as well
as giving a pair-wise multiple sequence alignment for the
proteins sequence. For each pair of residues in the protein
sequence (subject to certain restrictions given below) we
generate a pattern of inputs for a neural network.

Neural Network Inputs for Protein Contact
Prediction
Pairwise correlations (25 inputs)

The multiple sequence alignment is used to calculate the
(mutational) correlation between two columns of the mul-
tiple sequence alignment. The correlations are calculated
as in Gobel et al.,'? with the minor modification that the
Blosum62 matrix rather than that of McLachlan® is used
to score the residue interchanges. Our tests showed that
the McLachlan and blosum matrices performed at approxi-
mately the same level as predictors of contact pairs of
residues. For a given protein the correlations are normal-
ized by subtracting the average pair correlation and
dividing by a constant to bring the value into approxi-
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mately the range [—1,1]. Columns that are either con-
served or have more than 10% gap entries are excluded
from the training set, while up to 40% gap entries are
allowed for the test set of proteins.

Windows of length 5 of consecutive non-excluded col-
umns are found. For each pair of non-overlapping windows
the 25 correlations between columns of the first window
with columns of the second are used as inputs to the neural
network. The aim is to predict whether the middle residue
of the first window is in contact with the middle residue of
the second.

Residue classes (ten inputs)

Residues may be classified as non-polar, polar, acidic, or
basic.? For a pair of residues there are ten possible pair
cases, both non-polar, both polar, and so on. Thus we have
ten binary inputs, exactly one of which is set to one to
encode the residue type of the pair we are attempting to
predict on.

Predicted secondary structure (18 inputs),
(2 windows, length 3)

Given the input sequence, Psipred gives a predicted
secondary structure for each residue as either helix, sheet,
or neither. For a given residue, its predicted secondary
structure type is encoded as three binary inputs, one of
which is set to one. For a given residue pair that we are
attempting to predict with, the predicted secondary struc-
ture is input for the two residues as well as the four
residues that are adjacent to them. This gives a total of 2 X
3 X 3 = 18 inputs.

Affinity score

A given residue pair is assigned an affinity score based
on the type of each of the amino acids. From a training set
of 50 proteins, the fraction f,, of each residue pair {x,y} type
in contact was calculated (see supplementary material).
For instance, of all the alanine-cysteine pairs in the 50
proteins the fraction in contact was 0.0326. For a given
residue pair {x,y} the affinity score is given by 30(f,, — 7.....)
where f,,,. is the average over all residue pair types. The
normalization of subtracting the average and multiplying
by 30 is to bring the value into approximately the range
[-1,1].

Length of input sequence and residue separation
(two inputs)

The length of the sequence and the sequence separation,
each divided by 1000, are input for the pair we are
predicting with.

Network Architecture and Training

The predictor neural network is a standard feed-forward
network, with 56 inputs as given above, ten hidden units,
and a single output. The expected output is 1 for contacts
and 0 for non-contacts. Experiments were performed with
different numbers of hidden units (data not shown here)
and ten units was found to be a good balance between
generalization and over-training.
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TABLE 1. Average Prediction Accuracy by Sequence Length for the Best L, L/2, L/5, and L/10

Predictions’
L L/2 L/5 L/10
All (1033 proteins) 0.174 (7.70) 0.217 (9.69) 0.270 (12.34) 0.307 (14.11)
0 = L < 100 (262 proteins) 0.163 (3.33) 0.201 (4.12) 0.241 (4.90) 0.283 (5.81)
100 = L < 170 (296 proteins) 0.175 (5.69) 0.214 (7.07) 0.269 (9.12) 0.291 (9.94)
170 = L < 300 (268 proteins) 0.189 (9.62) 0.237 (12.20) 0.301 (15.64) 0.347 (18.32)
L = 300 (207 proteins) 0.169 (13.60) 0.213 (17.23) 0.271 (22.09) 0.308 (25.12)

"The bracketed numbers are the average of the ratios of the prediction accuracy to the random prediction
accuracy, i.e. the improvement of the prediction over a random predictor.

Training and test proteins were randomly chosen from a
representative set of proteins (pdb_select'* Sept 2001) of
the Protein Data Bank. Approximately 1600 proteins were
first selected, then those with broken chains (i.e., those
sequences in which the C, to C, distance of some pair of
successive residues was greater than 5 A) or less than 15
sequences in the generated multiple sequence alignments
were removed, leaving 1133 proteins. A single chain was
chosen from those PDB files with multiple chains. From
the 1133 proteins, 100 were randomly chosen for training,
and the remaining 1033 for testing. The training data was
then a collection of 739,753 patterns of contact and non-
contact from the set of 100 proteins. See the supplemen-
tary material for a list of PDB identifiers for the proteins.

The Stuttgart Neural Network Simulator® version 4.2
was used to train the neural network using standard back
propagation with a momentum term. (It is perhaps worth
noting that we found SNNS to be well-documented, easy to
use, with a variety of useful features.) A variety of training
schemes were tested and back propagation was found to
perform best (data not shown). A validation set of 50
proteins was used to determine at what point to stop the
training. On the final architecture, approximately 30
random weight initializations and trainings were run, and
then the best performing network on the validation set
was selected.

Of the 739,753 patterns used for training, 17,996 were
contacts. In the papers of Fariselli et al.'*>'! balanced
training is favoured, that is taking an equal number of
contacts and noncontacts to train a neural network. How-
ever, our experiments with balanced training performed
typically 2% worse than just training with all the patterns
from a protein in the ratio of contacts to noncontacts as
they naturally occur.

Testing the Trained Network

Once a “best” network was found, its performance was
tested on a set of 1033 proteins from the Protein Data
Bank, selected as described in the previous section. The
test set is large enough to give statistically meaningful
results that should generalize to other proteins. For closer
comparison with results obtained by other groups we
obtained PDB files for 59 of the proteins used in the recent
CASP5 experiments, and tested the predictor on them.
The CASP5 target identifiers are given in the supplemen-
tary material.

For a given target protein, we define the prediction
accuracy Ay on N predicted contacts to be

AN = NC/N

where N, is the number of the predicted contacts that are
indeed contacts. In the following, NV will typically be one of
L, L/2, L/5, or L/10 where L is the length of the sequence.
This follows the convention for evaluating protein contact
prediction set out by the EVA project* (though they further
distinguish several different minimal sequence separa-
tions for the pairs being predicted on, and we also do not
report on the case N = 2L since this is typically larger than
the actual number of contacts).

For a given protein, the random prediction accuracy, A,
is defined to be the fraction of the patterns generated that
are contacts. The improvement of a set of predictions is
then given by

Improvement = Ay/Ag.

The coverage (fraction of observed contacts predicted) is
given as

Coverage = NJ/N,,
where N, is the observed number of contacts.

RESULTS AND DISCUSSION

The results of the predictive accuracy of the neural
network on the 1033 test proteins are presented in Tables
I II, ITI, and IV. In Table V results obtained on 59 proteins
from the CASP5 assessment are presented.

In Table I the averages over the 1033 proteins of
predictive accuracy on the best L, L/2, L/5, and L/10
predictions are given for each protein, where L is the
sequence length. Over all 1033 proteins, for the best L
predictions we obtain an average accuracy of 0.174 with a
standard deviation of 0.096. For L/2, we obtain 0.217 *
0.13; for L/5, we obtain 0.270 + 0.18; and L/10, we obtain
0.307 = 0.22. The relatively high standard deviation
reflects the fact that the distribution is not normal and has
along trailing tail. Table Ib of the supplementary material
gives the standard deviation for all the data in Table I. The
average accuracy on the best L/2 predictions is often
reported in the literature, and here an average accuracy of
0.217 is obtained over all 1033 sequences.

In Table I, the sequences are also separated according to
their sequence length to give the average accuracy for
sequences in certain length ranges. For direct comparison,
the length bins are chosen to be in accordance with the
results reported in the papers of Fariselli et al..'%!! It can
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the 1033 test sequences.

Accuracy on best L/2 predictions versus sequence length L for

TABLE II. Average Prediction Accuracy by Sequence
Length for Those of the 1033 Test Proteins for Which There
Were at Least 100 Sequences in the Multiple

Sequence Alignment
L L2 L5 L/10
All (434 proteins) 0.189(9.56) 0.235 0.293 0.333
0 = L < 100 (73 proteins) 0.191(3.54) 0.237 0.280 0.321
100 =L <170 (85 proteins) 0.198(6.39) 0.248 0.311 0.345
170 = L < 300 (133 proteins) 0.200 (10.51) 0.247 0.312 0.356
L = 300 (143 proteins) 0.172(13.63) 0.216 0.272 0.311

be seen that the predictive accuracy is relatively consistent
across the different protein lengths (see also Figure 1.) We
also give the average improvement over random predic-
tion, that is the average ratio of the prediction accuracy to
the overall fraction of residue pairs that are in contact for
the protein. Overall, for the 1033 sequences, the average
fraction of residue pairs in contact is 0.0305.

Of the 1033 proteins, 434 had more than 100 sequences
in the alignment used to calculate the correlations. We
would expect that a larger number of sequences in the
alignment would give rise to more significant correlations.
Hence, if the patterns of correlation approach is valid, we
should see better predictive power for those proteins for
which there are more sequences in the alignment. Table 11
shows that this is in fact the case. Comparing the average
accuracy on the 1033 proteins with the 434 proteins that
had more than 100 sequences in the alignment the improve-
ment ranges from 1.5% to 2.6%.

The question then arises whether the improvement
might have been obtained by chance. By taking 10,000
random subsets of size 434 of the 1033 proteins we can
estimate the p-values for getting the predictive accuracies
obtained in the first row of Table II. Of the 10,000 random
subsets, none had accuracy greater than 0.189 for the best
L predictions, none had accuracy greater 0.235 for the best
L/2 predictions, three had accuracy greater than 0.293 for
the best L/5 predictions, and four had accuracy greater
than 0.333 for the best L/10 predictions. Hence the p-
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TABLE III. Average Prediction Accuracy on the 1033 Test
Proteins by SCOP Secondary Structure Classification

L L/2 L/5 L/10
a (271 proteins) 0.097 (5.75) 0126  0.166  0.201
B (248 proteins) 0.186 (6.04) 0216 0251  0.266
o/B (215 proteins) 0.213(1257) 0272 0352  0.397
o+ B (199 proteins)  0.233 (8.35) 0292 0365 0412

TABLE IV. Average Prediction Accuracy by SCOP
Secondary-Structure Classification for those Proteins for
Which There Were at Least 100 Sequences in the Multiple

Sequence Alignment
L L/2 L/5 L/10
a (99 proteins) 0.120 (7.48) 0156 0207  0.236
B (89 proteins) 0.192(7.34) 0210 0250  0.266
o/B (145 proteins) 0.211 (13.06) 0.268 0.340 0.385
a + B (64 proteins)  0.247(9.09) 0.308 0.386  0.457

values are estimated to be at most 107, 1074, 3 X 1074,
and 4 X 10™*, respectively, for these figures.

The secondary-structure type of the test proteins was
obtained from the SCOP database. Of the 1033 proteins,
933 had a classification of either all alpha («), all beta (),
alpha and beta proteins (o« + B) or alpha and beta proteins
(a/B). Table III presents the average prediction accuracy
sorted by secondary-structure class. It can be seen that the
predictive accuracy is highest (up to around 40%) for the
mixed « and B cases, with the predictive accuracy on the
all a case being less than half that of the mixed case.

Previous attempts at contact prediction have also found
that prediction seemed to be particularly difficult for
proteins whose secondary structure was of a-type.'>** In
Fariselli et al.,** it was suggested that the poor predictions
of their methods on this subset of proteins might be a
result of the underrepresentation of a type proteins in
their training set. However, in our case 20 of our 100
training proteins were of a type, and so here it appears not
to be a problem of underrepresentation. We also attempted
to train a network just on proteins of a-type to predict on
a-type protein (data not shown), but no improvement in
prediction accuracy was obtained. Given the details of our
method, we might expect a-type prediction to be less
accurate because the patterns of contact are less local on
the sequence and require larger window sizes.

Of the 1033 sequences for which a SCOP classification
was available, 662 sequences were not of « type. On these
the average predictive accuracies were 0.209 (best L
predictions) 0.257 (L/2), 0.318 (L/5), and 0.352 (L/10).

Table IV shows the effect of including only those pro-
teins with more than 100 sequences in the multiple
sequence alignment, on the predictive accuracy on each of
the secondary structure types. The largest increases in
accuracy occur when taking L/10 predictions, or on the all
a type secondary structure. The increase in accuracy for
the a type is as we might expect. The larger number of
sequences leads to stronger correlations, and so the weaker
patterns of contact generally obtained from helices are
more easily recognised by the neural network.
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Fig. 2. Predictive accuracy of neural network output for 1033 test
sequences. For a given neural network output, all the patterns from the
10383 proteins that have this network output or greater are found, and then
the fraction of these that are contacts is plotted.

Given an output from our neural network for a given
input pattern, it would be useful to be able to assign a
probability that the residue pairs are in contact. In Figure
2, the average predictive accuracy for a given neural
network output is shown. For a given neural network
output, we find all of the patterns from the 1033 proteins
that have this network output or greater, and then plot the
fraction of these that are contacts. It is interesting to note
that the peak predictive accuracy of 0.428 in Figure 2 is
lower than the average accuracy obtained in some of our
data sets. This suggests that rather than setting neural
network output cutoff points to select which pairs of
residues we predict are in contact, it is better to take the
“best L/10” predicted contacts.

Comparison With Previous Contact Predictors

As far as the authors are aware, the CORNET predic-
tor,'* which is an extension of the work reported Fariselli
and Casadio'? and Olmea and Valencia,® claims to have
the best contact prediction results to date. Their method is
aneural network approach that involves encoding frequen-
cies of residues in columns of a multiple sequence align-
ment, as well as having inputs based on predicted second-
ary structure, length of input sequence, and residue
separation (which having read their work we also chose to
use.) Overall this resulted in a rather large network
having some 1071 inputs, eight hidden units and a single
output.

On a test set of 29 proteins, making L/2 predictions on
each, CORNET obtained an average accuracy of 0.14. As
with our results, all a proteins were found to be difficult to
predict, and if the 7 o’s were removed from the dataset an
accuracy of 0.16 was obtained.

It should be noted though that in Fariselli et al.l! a
residue pair is defined to be in contact if the C; atoms are
less than 8 A apart, while here C, separation is used.
(Though our tests show that the neural network predicts
C, or C, distance with close to the same accuracy.) And in
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Fariselli et al.!! only residues that are separated by at
least six residues are considered, while here residues are
separated by at least four residues. By way of comparison,
using our network to predict to C distances and with the
restriction that residues that are separated by at least six
residues, the neural network here gives average predictive
accuracies of 0.165 (best L predictions) 0.205 (L/2), 0.255
(L/5), and 0.288 (1/10), on the 1033 test proteins.

In Table V results of testing the predictor on a set of 59
proteins from the the CASP5 assessment that ran in 2002
are given. Note that we did not participate at the time in
CASP5, but the results of the our predictor are presented
in an attempt to give a comparison with other predictors
on a standard data set. Also note that there were 78 target
proteins in CASP5, but only 59 were available to us. For a
summary of the results of other groups on CASP5 proteins
see Table VI in Aloy et al.!” The results in Table V of this
paper are presented to allow direct comparison. In particu-
lar C; to Cy residue separations are predicted as in the
CASP5 experiments. The first column gives the number of
predictions made per protein. These predictions are then
divided according to the residue separations, and the
average accuracy and coverage over the 59 proteins is then
given for each class. It can be seen that the average
predictive accuracies are substantially higher than those
obtained for the 1033 test proteins. This appears to be a
consequence of a relatively high number of contacts in the
59 CASP5 proteins. On average, just over 4% of pairs
separated by four or more residues were in contact in the
CASP5 set, compared to an average of 3% in the 1033 test
proteins. In fact, the average improvement in prediction
for the best L predictions was 6.55 for the CASP5 set,
compared to 7.7 for the 1033 proteins.

Of the six groups participating in the CASP5 experiment
for contact prediction, the patterns of contact approach has
generally better accuracy and coverage than all but two of
them: the GeneSilico (517) and Bujnicki-Janusz (020)
groups, which achieved substantially higher accuracy for
approximately the same degrees of coverage (see Table VI
in Aloy et al.'?). But since both of these approaches
involved generation of multiple models of the three-
dimensional structure of each protein together with hu-
man intervention, this is not unexpected.

CONCLUSION

Fariselli et al.!! state that their goal is to obtain an

accuracy of 50%, because then the folding of a protein of
less than 300 residues length could be reconstructed with
good accuracy (within 0.4-nm RMSD). While we are still
short of this aim, it can be seen that under restrictions
such as having a large number of sequences in the
multiple-sequence alignment and sequences being of par-
ticular secondary-structure type, the patterns of correla-
tion approach is a step closer to this goal.

One approach to improving predictive accuracy would be
to find a better measure of correlated mutations. In Singer,
Vriend, and Bywater,® a new method using likelihood
scores is described to find correlated mutations. This
method appears to give better results than the correlated



684

N. HAMILTON ET AL.

TABLE V. Average Predictive Accuracy and Coverage on 59 Proteins From the

CASP5 Experiments’
All pairs Middle range Long range
Predictions/protein Acc Cov Acc Cov Acc Cov
L 0.210 0.082 0.186 0.152 0.210 0.081
L2 0.255 0.050 0.229 0.094 0.254 0.051
L/5 0.301 0.023 0.273 0.044 0.300 0.023
/10 0.321 0.012 0.261 0.025 0.313 0.011

"The first column gives the number of predictions made per protein. The data is divided according
to the residue separations: greater than or equal to five (All pairs); between five and eight (Middle
range); greater than or equal to nine (Long range). The average accuracy (Acc) and coverage (Cov)
over the 59 proteins is then given. Note that here we predict C; to C;; residue separations.

mutation method of Gobel et al. It will be interesting to see
if it can be used as a replacement for the correlated
mutations in our method to improve overall prediction.

In Olmea and Valencia,® the method of contact occu-
pancy filtering is described. It uses the fact that an amino
acid can have only a limited number of contacts, to filter
out physically impossible configurations. This leads to an
approximately 25% reduction in the number of predic-
tions, but can improve predictive accuracy by several
percentage points.'® Currently we are investigating the
method with the aim of providing improved accuracy on a
reduced set of predicted contacts.

Contact Prediction Server

A contact prediction server implementing the patterns
of contact approach is available at http:/ /foo.maths.
uq.edu.au/ ~nick/Protein/contact.html. All data sets used
in this work are also available there.
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