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Introduction

tructural biologists routinely dream of beingS able to predict protein conformation from se-
quence information alone, but if there is no signifi-
cant sequence homology to a known structure,
there is no reliable recipe. The ambitious may aim
for an ab initio prediction, trying to search all
reasonable conformations in either continuous or
discretized space.1 The more timid may note that a
novel sequence is unlikely to have a really new
structure, and will probably adopt a fold similar to
one already seen.2 In that case, scanning a library
of known structures for the most suitable template
will often produce a useful answer. This has led to
the popularity of protein-threading approaches for
structure prediction,3,4 and a proliferation of en-
ergy or score functions.5 ] 10

For protein threading, one wants the best align-
ment of the sequence on to each member of a
library of candidate structures. Each alignment
produces a trial structure, and these have to be
ranked. The initial alignment is obviously impor-
tant, but in the most general formulation, allowing
for gaps, the sequence]structure alignment prob-
lem is NP-complete.11 This means that every prac-
tical approach must use some approximation. The
aim of this article is to test a score function simpli-
fication that allows a Needleman and Wunsch
algorithm12 to be directly applied for solving the
alignment problem. This allows one to generate an
optimal alignment in a nonoptimal score function.
For ranking the calculated alignments across the
library, the simplification can be removed and
scores calculated using the best score function
available.

There are many approximations possible for se-
quence to structure alignments. The search space
can be reduced by forbidding gaps within sec-
ondary structure units. The problem might still be
NP-hard, but may be approachable with a method
such as Monte Carlo13,14 or a branch and bound
algorithm.15 To allow a gap of any length, at any
position, one may use a dynamic programming
algorithm as is commonly employed in sequence
comparisons. This requires a matrix with every
residue from the sequence at every position in the

Ž .template and containing its score or energy in
the field due to its neighbors. Unfortunately, the
neighbors have not been aligned, so a direct ap-

proach is not possible. One solution is a two-level
dynamic programming algorithm3 where one does
not use the real score of a residue interacting with
its neighbors, but rather, the best score it could
have.16 A simpler approach is to assume that in
similar structures, equivalent positions experience
a similar field due to their neighbors. Thus, in the
‘‘frozen approximation,’’ one builds a score matrix
by calculating the energy of each sequence residue
at each position in the template, but interacting
with the residue types of the original template.
This means that the structure library is not merely
a set of structural scaffolds, but its members actu-
ally have a memory of their original composition.
One can then use an iterative procedure to attempt
to remove the influence of the original template
residues. After the initial alignment, template
residue identities can be replaced by correspond-
ing residues from the aligned sequence, producing
a newly labeled template. On successive iterations,
the residues of the template are updated, and the
sequence realigned.17 ] 19

All of these methods share the philosophy that
one score function can be used for both
sequence]structure alignment and ranking of
alignments from the library. A different approach
is to say that one score function may not be
best for both purposes. Furthermore, a simplified
score function could be built that allowed a se-
quence]template score matrix to be calculated di-
rectly. This function would allow a residue to be
scored at any position on a template, without first
having to know the exact alignment of its neigh-
bors. That is, all interaction parameters would be
of the type AX, BX, CX . . . , where X represents any
other type of amino acid. As in a conventional
force field, this would require the coordinates of
both interaction partners. Unlike a conventional
force field, it would require knowing the identity
of only one interaction partner. This kind of con-

Ž .struction is dubbed a neighbor-nonspecific NNS
score function. This score function would lose in-
formation from the specificity of interactions, but
could be optimized so as to minimize the damage.
It would only be used for calculating alignments.
Once the location of residues has been determined,
there is no need for the approximation and the
best score function available should be used for
ranking the structures.

Aside from issues of interaction partner iden-
tity, the score functions used in this work are
constructed quite differently to most knowledge-
based force fields. There is no assumption that
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protein structures follow a Boltzmann distribution.
Instead, one defines a set of interaction function
and parameters that are adjusted so as to optimize
score function performance according to some nu-
merical criterion.20 ] 24 This was used to build a
function with a strong ability to distinguish native

Ž 7.structures from a very large number 10 of mis-
folded protein-like conformations.25 The methodol-
ogy could also be applied to build an alignment
Ž .NNS score function. This may be seen as a kind
of averaging where a particle experiences a field
due to the average of possible neighbor identities,
but is more sophisticated. The parameters are opti-
mized with the averaging present.

This means there are two score functions in this
work. The first, using only one particle identity, is

Ž .referred to as neighbor nonspecific NNS , and is
used for alignment calculation only. The second,
relying on the labels of both particles, is termed

Ž .the neighbor-specific NS score function, and has
been previously described.25 Because of the con-
struction methods, the force fields are in arbitrary
units and cannot even be expressed in reduced
terms of kT. We flaunt this feature, refer to the
constructions as score functions, and unashamedly
adopt the convention that a higher score is more

Ž .satisfactory opposite to energy .
In the following sections, the neighbor-non-

Ž .specific NNS score function is compared to a
Ž .more conventional neighbor-specific NS score

function. This shows the effect of the score
function approximations. Next, the NNS is
used to calculate sequence to structure alignments
that are compared to those from the frozen
approximation.17] 19 Finally, problems with con-
vergence in the frozen approximation are
demonstrated.

Materials and Methods

PROTEIN SELECTION

Different sets of protein chains were used for
deriving score function parameters, building a li-
brary of candidate proteins and testing protein
fold recognition. Score function parameters were
calculated using protein chains from Hobohm and

26 Ž .Sander August 1996 release . A subset was cho-
sen such that each chain had more than 100
residues, all backbone heavy atoms were present,
and no two protein chains had more than 25%

sequence identity. This resulted in 370 protein
chains described previously 25 and in supplemen-

Ž .tary material Table S1 . A large fold library was
built for generating large numbers of alternate
alignments. This came from the same source26

Ž .March 1997 release , and contained all proteins
such that no two members shared more than 95%
sequence identity, and all heavy backbone atoms
were present. This resulted in 1692 proteins listed

Ž .in supplementary material Table S2 .
Fold recognition was measured using two large

datasets from the literature27,28 described under
Results. Each set consisted of pairs of structurally
similar proteins with low sequence identity. From
each pair, one’s sequence is used as a probe, while
the structure of the other is hidden in a library of
several hundred decoy structures. As well as the
original literature, the lists of protein chains are

Žgiven supplementary material Table S3 and Table
.S4 . Entries in either set that had been superseded

in the July 1997 Protein Data Bank release were
replaced by newer versions. Rather than the origi-
nal set of Fischer et al.27 with a decoy library of
301 chains, the newer, enlarged set of 320 protein
chains was used.29

Given the large numbers of proteins, no attempt
was made to detect overlap in the sets of proteins
used for testing or those used for parameterization
and testing. Not only is there the likelihood of
some overlap of parameterization and testing sets,
but the problem is probably worse because some
protein entries are practically identical, but have
slightly varying names.

CALCULATION OF SEQUENCE]STRUCTURE
ALIGNMENTS

Initial sequence]structure alignments were cal-
culated using an adapted version of the algorithm
described by Needleman and Wunsch12 imple-
mented in the sausage program.30 Instead of
residuerresidue scoring matrices, residuertem-
plate scores were calculated using the score func-
tion described below. Rather than simple gap
penalties, geometric penalties for gaps in the se-
quence were used as described below.

All ranking of models was done after rescoring
using only those template locations with an aligned
sequence residue.

Sequence iteration followed the method of
Godzik et al.17 Only the highest scoring alignment
was saved and returned.
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GAP AND INSERTION PENALTIES

A geometric gap penalty, E was used forgap
gaps in sequence. From the coordinates of the
template, one can calculate the distance between
sites in the sequence. The gap penalty, E , wasgap
calculated according to the distance d betweenC Ni j

the carbonyl carbon of the first residue, i and the
amide nitrogen of the next residue, j

0 d F d¡ C N 0i j

2 2Ž .~s t t k d y d d - d F dŽ .E s i j gap C N 0 0 C N maxi j i jgap

2 2¢ Ž . Ž .s t t k d y d d - di j gap max 0 max C Ni j

Ž .1

where d is a reference distance for the0
carbon]nitrogen distance and d is a maximummax
distance considered, and k was a scalinggap
parameter. In all the calculations, d was set at0

˚1.37 A, slightly longer than the carbon nitrogen
˚ Ž .bond length. d was set at 14 A. s t t is amax i j

switching function to penalize gaps or insertions in
regions of secondary structure. t and t were thei j

secondary structure assignments given by the DSSP
program.31

1 t and t is neither¡ i j~Ž . Ž .a-helix nor b-sheets t , t s 2i j ¢k t or t is a-helix or b-sheets i j

The constant k is listed with other scaling param-s

eters in Table I.
Ž .Insertions in sequence gaps in template corre-

spond to more than one sequence residue occupy-
ing the same location in the template, and were
penalized according to a conventional gap open-
ingrwidening scheme. If N is the number ofins
inserted residues and N is used to limit themax
maximum penalty size, the insertion penalty Eins

TABLE I.
Parameters Used in Alignment and
Rescoring Calculations.

Score Function k k kgap ins s

Neighbor nonspecific 2000 750 5
( )Neighbor specific standard 250 250 1

was calculated by

0 N s 0¡ ins

Ž .s t , t k E N s 1i j ins open ins

Ž . Ž .s t , t k E q E N y 1i j ins open wdn ins~E s yins 1 - N - Nins max

Ž . Ž .s t , t k E q E N y 1i j ins open wdn max¢ N G Nins max

Ž .3

where k was a scaling constant. In all calcula-ins
tion, E the cost of gap opening was set to 0.3,open
and E , the cost of gap extension was set to 0.01.wdn
Scaling constants are given in Table I.

SCORE FUNCTION FORM
AND PARAMETERIZATION

The functional form and parameterization
method for the neighbor-specific force field has
been described previously,25 and is repeated only
briefly. Five interaction sites were used for each
amino acid, located at the backbone N, C a, C, and
O and side-chain C b atoms. A C b interaction site
was calculated for glycine residues assuming ideal
geometry. There were 20 types of C b particles
corresponding to the different residue types, but
only one type of each backbone atom. The total
score in the neighbor-specific score function for a
sequence-structure alignment over N residuesres
was calculated from

5N 5N Nres res res
spec spec Ž . Ž .E s E i , j q E kÝ Ý Ýtot pair sol

i j)i k

Ž .q E q E 4gap ins

where i and j are indices running over all the
aligned residues and the summations run over the
5N particles. The pair score for particles i and j of
residue types t and t at a topological distance si j i j
and Cartesian distance of d was given by ai j
sigmoidal function

spec Ž . Ž .E i , j s p s , t , tpair pair i j i j

0 Ž .= 1 y tanh w d y d 5Ž .ž /ž /pair i j i j

Ž .where p s , t , t is a parameter determiningpair i j i j
interaction strength, d0 is a reference distance de-i j
termining the step position and w determiningpair
the slope of the interaction function. Only three
classes of topological distance s were considered.i j
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These were j s i q 2, j s i q 3 and j G i q 4. The
Ž .interaction between adjacent residues j s i q 1

was only treated by the gap penalty. The ‘‘solva-
tion energy’’ or particle environment term, Esol
was given by a similar function

Ž . Ž . Ž Ž . 0 . Ž .E i s p t 1 y tanh w n i y n 6Ž .Ž .sol sol i sol

where p was an adjustable parameter and wsol sol
Ž .controlled the slope of this function. n i was the

˚ a aŽ .number of residues within 5.8 A C ]C distance ,
but separated by more than three residues in the
sequence. n0 was set to 3.

The neighbor nonspecific score function was
given by

5N 5Nres res
non-spec non-spec Ž .E s E i , jÝ Ýtot pair

i j)i

Nres

Ž . Ž .q E k q E q E 7Ý sol gap ins
k

where Enon-spec was the pairwise score term. Thispair
Ž .was similar to eq. 5 , and depended on the coordi-

nates of both particles i and j, but only the residue
type of particle i.

non-spec Ž . Ž .E i , j s p s , tpair pair i j i

0 Ž .= 1 y tanh w d y d 8Ž .ž /ž /pair i j i j

Ž .where p s , t was a set of parameters for thepair i j i
neighbor-nonspecific score function.

SCORE FUNCTION PARAMETER
OPTIMIZATION

Parameters for the neighbor-specific interaction
function have been described.25 A similar approach
was used to optimize the parameters for the neigh-
bor-nonspecific score function. First, the z-score
for a native sequence]structure pair was defined
by

² :D E
Ž .z s 9

22'² : Ž² :.D E y D E

Ž .where D E is the difference of score E y Enat
between the native sequence]structure and an al-
ternate structure, and the angle brackets denote
the arithmetic average over the collection of alter-
nate conformations. For the neighbor-nonspecific
score function, these scores were calculated from

Ž .eq. 7 . The alternative conformations were gener-
ated from every possible ungapped alignment of
the sequence on the coordinates of every parame-
terization protein of the same or a greater number
of residues.

Parameters were then adjusted so as to optimize
the score function’s ability to distinguish native
from nonnative sequence]structure pairs. The ad-

ª
justable parameters are considered as a vector, P,

ªnon-specŽ .on which the score E P is linearly depen-tot
Ž .dent. Equation 9 is then expanded in terms of

these parameters. For clarity, we do not write the
obvious dependence on coordinates. A target func-
tion was then defined so as to encapsulate force
field quality

nlib 41ª ªŽ . Ž . Ž .t P s z P q 15 10Ý ž /inlib i

where z is the z-score of protein sequence i,i

calculated using the parameterization protein set.
Ž .The summation runs over all n here 370 pro-lib

teins in the set. The constants 15 and 4 were
determined by trial and error. The target function
w Ž .xeq. 10 was then maximized using the fast
method described previously.25 This is equivalent
to adjusting the force field so as to get the best
possible discrimination of native from alternate
structures. As in the earlier work, conjugate gradi-
ents was used for minimization, but it appears that
a global optimum was reached, presumably due to

Ž . Ž . Ž .the simple functional forms of eqs. 5 , 6 , and 8 .
ª

For the neighbor-nonspecific score function, P
Ž .consisted of p s , t for each amino acid andpair i j i

atom type at each of the three topological dis-
Ž .tances, and the 20 p t parameters. For onesol i

Ž .topological distance, this meant 4 = 4 q 1 r2
backbone]backbone interaction, four backbone]
side-chain interactions, and 5 = 20 backbone]
side-chain interactions. Summing over the three
topological distances and adding the 20-particle
environment terms gave a total of 362 adjustable
parameters. For the neighbor-specific force field,
920 parameters were optimized.25

STRUCTURE COMPARISON AND MEASURES
OF FOLD RECOGNITION

All pairwise structural comparisons were cal-
culated from root-mean-square differences
of distance matrices based on backbone C a coordi-
nates.32,33 This is often referred to as the distance
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matrix error or DME,20,34 and defined by

1r2N2 2XŽ . Ž .DME s d y d 11Ý i j i jŽ .ž /N N y 1 i-j

where the indices i and j run over all the N
Ž a . Xparticles C atoms and d and d are the dis-i j i j

tance between atoms i and j in the first and
second structures.

Structural similarity between probe sequences
and homologous structures was measured as in
Rost et al.27 Given the length of the probe se-
quence, L , the template structure, L , and the1 2
number of aligned residues from a structural
alignment L , one can define a ratio Rali ali

2 = Lali Ž .R s 12ali L q L1 2

Values for R were taken from the FSSPali
database.36 ] 39 The success of fold recognition was
judged by the cumulative percentage of correct
folds as used in Rost et al.27 and earlier defined:35

R Ž .N rcorrŽ . Ž .Q R s 100 13Ý Nprotrs1

Ž .where N r gives the number of correct first-corr
rank folds at rank r and N is the number ofprot
probe sequences in the test set.

Results

APPROXIMATIONS IN THE NONSPECIFIC
SCORE FUNCTION

Neglecting the identity of one member of each
interaction pair might be a serious approximation.
We can, however, directly measure its effect by
comparing scores from the neighbor-specific and
neighbor-nonspecific functions. For this compari-
son, three protein sequences were chosen so as to

Ž .span range from small 50 residues, 4tgf to
Ž .medium 150 residues, 1 sct chain B and larger

Ž .301 residues, 1ezm structures. Each sequence was
then aligned to every member of the fold library
using the nonspecific score function and allowing
gaps and insertions yielding 3 = 1692 structures.
Figure 1 shows the correlation between the NNS
and NS scores. The first feature is clear. A high-
scoring sequence]structure pair will be favored by
either function. A second feature is less obvious.
The points do not necessarily fit to a straight line.

FIGURE 1. Comparison of nonspecific and
neighbor-specific score functions. Each of the three
sequences was aligned to 1692 templates, and the
resulting structures scored using the neighbor-specific
and nonspecific functions. Scores are in arbitrary units.

This is not surprising or disappointing. Each score
function is optimized to distinguish native from
misfolded structures, but does so using a different
balance of terms. Furthermore, the ideal result
would be any monotonic relationship, even if very
nonlinear.

The figures show plots from three protein se-
quences with gapped alignments, but are typical
of the score functions tested on other protein se-
quences and with ungapped alignments.

ALIGNMENT QUALITY OF
NEIGHBOR-NONSPECIFIC SCORE FUNCTION
AND FROZEN APPROXIMATION

To compare two sequence]structure alignment
methods, one can take some pairs of structurally
similar proteins. Within each pair, one is labeled
the probe sequence and the other the homologous
structure. One can then calculate sequence]struc-
ture alignments and compare the quality of the
answers produced by the neighbor nonspecific
Ž .NNS score function and the frozen approxima-
tion. To minimize debate about benchmarks, pro-
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tein libraries, bias, and crossvalidation, we have
taken a rather large number of pairs from two

Ž . 28sources: a the benchmark of Fischer et al. and
Ž . 27b Rost et al. The first is a set of 68 pairs, each
with less than 30% sequence identity between the
probe and homologue, and where at least half the
residues of the larger sequence superimpose on

˚the smaller with a difference of less than 3 A. The
set from Rost et al.27 consists of 89 probes, but each
may have several structural homologues, giving
1003 pairs. Each probe has less than 25% sequence
identity to its structural homologues. This set
contains some pairs of very similar proteins, but
others where there are only small fragments of
similarity.

The most direct measure of alignment quality is
to see how useful it is for predicting structure.
After an alignment, one can build a model for the
probe sequence, using the coordinates of the tem-
plate. This model can be structurally compared to

Ž .the correct answer probe native structure . For
this comparison, we have calculated the root-
mean-square difference of distance matrices, often

Ž .referred to as the distance matrix error DME
Ž .given by eq. 11 . When comparing models from

the two alignment methods, we required that they
be of similar size, so comparisons were not consid-
ered if the two alignment methods produced mod-
els differing by more than five residues. This re-
duced the number of points from 68 to 46 in the
Fischer et al.28 set and from 1003 to 781 in the Rost
et al.27 test set. Small models were also removed
from the comparison because these would result in
misleading, small DME values. These can arise
from large gaps or skewed alignments. Requiring
that models have at least 50 residues removed 17
more points from the Rost et al.27 test set, and had

Žno effect on the other set all models were more
.than 60 residues .

The results of this comparison are shown in
Figure 2. The most outstanding features is that
there is very little difference between the two
methods. The solid line on each plot is not a line of
best fit, but marks x s y. If one method was
superior, the points would tend to lie to one side
of the line.

One can also view the alignments in a less
direct manner. With test data sets, one does know
the correct structure for the probe sequence, and
this can be superimposed on the template. The
predicted alignments can then be compared to this
reference alignment. One measures the difference
Ž .shift between each residue’s position and where
the reference suggests it should be, and then calcu-

FIGURE 2. Structural comparison of alignments
( )generated using neighbor-nonspecific NNS score

function and frozen approximation. The distance matrix
( )error DME is a measure of the similarity between the

model generated by an alignment and the native
( )structure for the probe sequence a test set of Fischer et

28 ( ) 27al. , b set of Rost et al. The line x = y is marked on
each plot.

lates an average shift. The set of Rost et al.27 has a
corresponding set of structural alignments readily
available,36 ] 39 so the average shifts were calcu-
lated and are shown in Figure 3. The top plot
shows that the alignments vary from good to
meaningless for both methods. The bottom plot is
an expanded region of the same data set showing
shifts of up to 20 residues. Regardless of the align-
ment method, the results span a range from essen-
tially perfect to quite poor. As in Figure 2, the line
x s y is marked on both plots, but one could not
claim that the points tend to lie above or below the
line.

One should not read too much into Figure 3.
This treats the alignment as a simple linear prop-
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FIGURE 3. Comparison of shifts of alignments
( )generated using neighbor-nonspecific NNS score

function and frozen approximation. Each axis measures
the average shift with respect to a reference structural

( ) ( )alignment. a shifts of up to 400 residues b same data,
but with an expanded scale.

erty, whereas one is really interested in the three-
dimensional consequences of the alignment. For
example, a shift of four residues in a helix may be
relatively small compared to a shift of four residues
in a b-strand. Second, there will not always be a
clear correct structural alignment between non-
identical structures.40,41 This means that the two
alignment methods may produce results that are
of equal quality, but one appears better because it
is closer to the reference alignment selected by
some structure alignment program.

Regardless of these details, there are some clear
conclusions. The neighbor-nonspecific score func-
tion appears no worse than a more conventional
function combined with the frozen approximation.
This is remarkable when one considers the func-
tional forms. The neighbor-nonspecific score func-

tion models pairwise interactions with just over 20
adjustable parameters for a given topological dis-
tance. In contrast, the more conventional score
function used in the frozen approximation begins

Ž .with 20 = 21 r2 corresponding parameters.

SEQUENCE ITERATION

When using the frozen approximation, sequence
iteration or ‘‘iterative thawing’’ was performed as
described in Godzik et al.17 This means that an
initial alignment of sequence to structure is per-
formed by calculating the score of sequence
residues in the field due to the residue types of the
template. After this initial alignment, sites on the
template can have their residue type replaced by
those from the aligned sequence. The sequence can
be realigned to this newly labeled template, and
this iterative process can be performed a number
of times. In the first calculations, it appeared that
the runs did not always converge in less than 20
steps. This was investigated in more detail.

In the previous section, there was a large num-
ber of probe sequences, each aligned to a relatively
small number of homologous structures. In a real
structure prediction, one is more likely to take a
sequence and attempt alignments to a large num-
ber of templates in a library of candidate struc-
tures. Most of these will have no significant simi-
larity to the correct answer. This is the approach
we took to measure the convergence properties of
sequence iteration. A small number of sequences
Ž .six were taken, but aligned to all 1692 members
of a structure library. Unlike previous workers, we
not only checked for convergence, but iterations
were stopped if cycling was detected. That is,
some iteration would produce an alignment identi-
cal to one already visited. Calculations were lim-
ited to 20 iterations, but stopped if there was no
improvement of the best score for any 10 succes-
sive steps. This last case was classed as divergence
Ž .as opposed to convergence , even though the
system might cycle or converge given enough
iterations.

The results are summarized in Table II. The
simplest summary is given by the first two
columns, which state the fraction of the calcula-
tions in which sequence iteration was useful. A
run was classed as successful if, on any iteration,
the score rose above the initial value. Thus, a
calculation might begin to cycle, yet still produce a
better scoring alignment than the starting point.
The results vary between proteins, but sequence
iteration only appears useful on between a quarter
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TABLE II.
Results of Sequence Iteration.

Overall % Convergence % Exceeded Limit %
a bProtein Class Size Success Failure Converged Cycled Diverge Incomplete

1bjm A a 162 31 69 10 39 48 3
1cpc A b 211 36 64 10 57 32 1
1edh a / b 218 31 69 6 42 49 3
1gta b 216 24 76 9 38 50 3
1try b 224 27 73 8 44 46 3
2mnr a / b 357 8 92 18 38 43 1

a PDB acquisition code with chain identifier appended where appropriate.
b Fold class taken from Murzin et al.50

and third of sequence]structure alignments. The
phenomenon of cycling alignments is not insignifi-
cant, accounting for anywhere from a third to half
the sequence]structure alignments attempted. Per-
haps the most striking result is listed under diver-
gence. Between 30 and 50% of sequence iteration
calculations actually deteriorate over 10 or more
successive sequence iterations.

Another way to judge the utility of the method
Ž .is to consider all the alignments 6 = 1692 and

count the number of times the best result was
achieved without iteration, on the first iteration,
and so on. This is shown in Figure 4. As expected
from Table II, the best number of iterations is
usually zero. Some alignments improve with one
iteration, fewer with two, and so on. A point not
clear from Table II is that even though many
iteration converge or cycle, they do not necessarily
converge in the sense one usually expects in opti-
mization methods. The alignment may become sta-
ble, but it is not necessarily an optimum of any
kind.

FIGURE 4. Iteration number of best alignment during
sequence iteration. Each bar shows the number of times
the best alignment score occurred on that iteration.
Results are summed over all six sequences, aligned to
the protein fold library of 1692 templates.

DIFFERENCE BETWEEN FOLD RECOGNITION
AND ALIGNMENT

We have proposed that one may tackle fold
recognition using two scoring functions—the first
for sequence to structure alignments within a li-
brary, and the second for ranking the alignments.
One may wonder if the second score function is
necessary. Figure 1 suggests that the neighbor-

Ž .nonspecific NNS score function is well correlated
with the neighbor-specific score function, and per-
haps the simple score function would be sufficient
for fold recognition. This can be answered by us-
ing both NNS and NS functions for ranking a set
of alignments.

In the previous sections, we used known homo-
logues to assess alignment quality. Here, a larger
calculation is used based on complete test sets and
where the goal is to find structural homologues
within a library of decoys. The first set of Fischer
et al.27 had 68 probe sequences with structural
homologues hidden in a library of 320 decoys. The
second set, from Rost et al.27 had 89 probes and a
library of 723 decoys.

The set of Rost et al.27 lent itself to further
analysis because the sequencerhomologue pairs
had been labeled according to their degree of
structural similarity. A quantity R , given by eq.ali
Ž .12 , was used. An R near 0.9 means that nearlyali

the entire structure are similar, whereas R nearali

0.1 would mean that only small fragments of probe
and template were structurally similar.

In total, this meant the fold recognition mea-
surements were performed with both score func-

Ž .tions for four sets of proteins: a full 89 protein set
27 Ž .of Rost et al., b the subset of 70 proteins with

Ž .R G 0.3, c the subset of 12 proteins with R Gali ali
Ž . 270.8, and d the full set of Fischer et al.
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The results of the score function comparison are
shown in Figure 5. Following Rost et al.,27 the
cumulative frequency of the first successful pre-

Ž . Ž .diction Q R is plotted, as defined by eq. 13 . This
measures the rank at which the first correct homo-

Ž .logue is detected. For example, a Q 5 of 40 means
that, considering all the probes, a correct homo-
logue was found within the first 5 guesses 40% of
the time. It only considers the first correct homo-
logue, and does not indicate where the method has
been more successful and several homologues have
been detected for a probe.

The plots clearly answer the original question.
The simplified NNS score function may be used
for sequence to structure alignment, but should
not be used for overall fold recognition. In every
set of proteins, the rankings from the neighbor-
specific score function are consistently better than
those from the NNS score function.

Somewhat unintentionally, the plots may reveal
some of the characteristics of the protein test sets.
Qualitatively, it would appear as if the set from
Fischer et al.27 in Figure 5d is closest to the Rost et
al.27 data set with R f 0.5 in Figure 5b. This mayali
not be coincidence given the selection of the Fis-
cher et al.27 set required that at least half the
residues of the larger protein in each pair readily
superimpose on the smaller.

( )FIGURE 5. Fold recognition, Q rank with different
force fields and different test sets. In each case, the

( )lower curve I shows fold recognition in the
( )neighbor-nonspecific score function. The upper line v

shows fold recognition in the neighbor specific score
( ) 27 ( )function. a Data set from Rost et al., b same as

( )above but with R G 0.5; c , same as above but withali
( ) 28R G 0.8, d data set from Fischer et al.ali

The plots also reveal some of the fold recogni-
tion properties of the score functions, even if the
aim has been to look at sequence]structure align-
ments. The top panel Figure 5a can be directly
compared with Rost et al.27 It would appear that
the functions used here are slightly less effective
than those of Rost et al.27 It is not until there is a
significant degree of structural overlap with R Gali
0.7 or R G 0.8 that the functions may approachali
being useful. This is not very different from the
findings of Bryant.42 From Figure 5c, one might
say that at this level of structural similarity, there
is a one in two chance of finding a correct homo-
logue in the first 5 to 10 guesses.

Discussion

From Figures 2 and 3, it would appear that the
Ž .simplified, neighbor-nonspecific NNS score func-

Ž .tion works as well or badly as the frozen approx-
imation for sequence]structure alignment. This re-
sult is somewhat disappointing. Until recently, the
frozen approximation had its foundations in opti-
mism, intuition, and the hope that environments
would be conserved in structurally similar pro-
teins. Zhang et al.43 have attempted to quantify the
validity of some of the assumptions. From their
results it may seem remarkable that the method
works as well as it does as the first step in many
protein-threading packages.

The NNS score function obviously does not do
better in its current form, but has some clear ad-
vantages. It has an order of magnitude less ad-
justable parameters than the comparable conven-
tional neighbor-specific score function. From a
practical point of view, one can gain a huge time
saving compared to sequence iteration. If one needs
2 to 10 iterations to find a final alignment, one can
gain 2- to 10-fold speed by using a simplified NNS
score function. Finally, alignments with the NNS
score function do not use the residue types of the
template at all. The method is completely free of
what has been referred to as template sequence
memory.

Aside from issues of performance, there are
some results that should be compared to previous
workers. The most surprising of these are the dis-
appointing results produced by sequence iteration
and the frozen approximation. One would like to
know if the problems, including cycling of align-
ments, occur with score functions based on Boltz-
mann statistics or other knowledge-based func-
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tions. Godzik et al.17 found that sequence iteration
usually converges in 5 to 10 iterations, whereas
less than 20% of the calculations in this work
converged in less than 10 iterations. Wilmanns and
Eisenberg19 state that, using their measure of cor-
rectness, 75% of initial alignments that begin as
more than 50% correct improve with sequence
iteration. Because they also had a number of align-
ments less than 50% correct, this result may be
closer to those seen in our work. Unfortunately, it
appears that no previous worker has quantified by
cycling of alignments. Maybe the problem is not
universal. We have certainly found that conver-
gence problems can be alleviated with larger gap

Ž .penalties data not shown .
Because qualitative comparison with previous

workers is difficult, one might try to reason
whether the problems seen here will be more gen-
eral. In fact, it is easy to create a simple score
function and model alignment that demonstrates
cycling. Consider a case with residues of types A
and B. Like residues repel, but the AB interaction
is attractive, rather like residues of opposite charge.
A sequence AABB is aligned to a template whose
original residues are qrst. This is shown in Figure
6. To complete the example, say that A residues
have a preference for a secondary structure such as
a-helix, and that this is the structure of the first
few residues of the template. Using the frozen
approximation, some alignment is produced, as
shown in the top panel. For sequence iteration, the

FIGURE 6. Sequence iteration and cycling of
( )alignments. In each panel, the top line lower case

shows the current identity of template residues, and the
( )line below it upper case the alignment of the sequence

( )upper case . The third line shows the new identities
assigned to the template residues after that iteration.

residues of the template are then replaced by the
aligned sequence, generating the newly labeled
template shown on the third line of the top panel.
At the next iteration, the sequence is aligned so as
to maximize the AB interaction and also the sec-
ondary structure preference of the A residues. In
the third panel, the sequence is again aligned, and
the template residues replaced. The new template,
however, is identical to the template of the top
panel. This model system will cycle forever with-
out convergence.

This very simple model system cycles with a
period of two iterations, and moving to a more
realistic score function allows one to generate more
complicated cycling patterns. In a larger protein,
different parts of the molecule cycle simultane-
ously with different periods. More generally, con-
vergence of sequence iteration is based on assump-
tion about the scorerenergy surface on which the
residues move. That is, the residues of an incorrect
alignment should have the effect of moving their
neighbors towards more correct locations. This may
or may not be the case and will certainly vary
between score function as they determine the shape
of the ‘‘energy’’ surface. It may well be the case
that the score functions used in this work are
particularly badly suited to sequence iteration.
They have been optimized to distinguish quite
sharply between native and incorrect structures,
rather than gradually rank the various nonnative

w Ž .xstructures eq. 10 .
Aside from issues of convergence in sequence

iteration, parameters have more general effects.
Gap penalties can be tuned to produce better re-
sults for the more distant homologues and pro-
duce an apparently better version of Figure 6a
Ž .data not shown . This, however, would be at the
expense of performance on other protein sets. In
general, one may want to use smaller gap penal-
ties when protein structures are less close and a
reasonable alignment requires more or larger gaps.
This is directly analogous to the use of different
gap penalties for sequence alignment, depending
on the expected degree of sequence similarity.44

From this work, it may seem as if it were a
totally new idea to separate sequence to structure
alignment from overall fold recognition. This is
obviously not the case. It has been proposed that
one may need one set of gap penalties for align-
ments and another for ranking the resulting mod-
els,45 and others have shown that different score
function will be best for different problem do-
mains.46 With the machinery here, one can demon-
strate that alignment and raking calculation really

JOURNAL OF COMPUTATIONAL CHEMISTRY 1465



HUBER AND TORDA

are different problem domains. One can compare
the distribution of scoresrenergies encountered at
each stage. Considering alignments, it appears that

Ž .the energies of alternative decoy alignments do
have a Gaussian-like distribution.25 Presumably,
they do in other workers’ score functions because
this is a requirement for the validity of the often
quoted z-scores.13,18,47,48 After calculating the best
alignment for a sequence to each member of a
template library, one has a different distribution.
The sequence of 1try was aligned to each of 1692
structures in the large template library, and the
distribution of scores is shown in Figure 7. This is
nothing like a Gaussian distribution. Clearly, dur-
ing alignment and final ranking, a score function is
working in different domains. The choice of 1try
was quite arbitrary, and the skewed distributions
are similar for all sequences examined.

The most important question raised and not
answered here is the degree to which the findings
are applicable to other score functions and force
fields used for fold recognition. In principle, there
is no reason why a Boltzmann-based score func-
tion could not be built using only one interaction
partner’s identity. It remains to be seen what qual-
ity of alignments would be produced.

Finally, it may be that the discrimination crite-
rion used in score function construction is not
ideal. On simple model systems, the correct align-

FIGURE 7. Distribution of scores of aligned models for
1try sequence. Alignments were calculated in the
neighbor-nonspecific force field and the resulting
alignments scored in the neighbor-specific score
function. Score is given in arbitrary units with less
favorable scores being more negative, and frequency is
the number of times a score was observed within the
1692 models.

ment may not correspond to the optimum from
the force field.49 This means that a future task is to
pursue separate alignment and ranking score func-
tions, but with more appropriate construction
methods.

The ‘‘sausage’’ program and parameter sets used
in this work are available from ftp:rrftp.rsc.
anu.edu.aurpubrtordarsausagerREADME.
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