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SUMMARY

The structural organization of the functionally rele-
vant, hexameric oligomer of green-absorbing pro-
teorhodopsin (G-PR) was obtained from double
electron-electron resonance (DEER) spectroscopy
utilizing conventional nitroxide spin labels and
recently developed Gd3+-based spin labels. G-PR
with nitroxide or Gd3+ labels was prepared using
cysteine mutations at residues Trp58 and Thr177.
By combining reliable measurements of multiple
interprotein distances in the G-PR hexamer with
computer modeling, we obtained a structural model
that agrees with the recent crystal structure of the
homologous blue-absorbing PR (B-PR) hexamer.
These DEER results provide specific distance infor-
mation in a membrane-mimetic environment and
across loop regions that are unresolved in the crystal
structure. In addition, the X-band DEER measure-
ments using nitroxide spin labels suffered frommulti-
spin effects that, at times, compromised the detec-
tion of next-nearest neighbor distances. Performing
measurements at high magnetic fields with Gd3+

spin labels increased the sensitivity considerably
and alleviated the difficulties caused by multispin
interactions.

INTRODUCTION

Membrane proteins are critical for cellular function because they

are positioned at the interface of an organelle or the cell with its

environment. Despite their immense importance, the structure of

membrane proteins remains difficult to characterize because

they often resist common experimental approaches (Bill et al.,

2011; Carpenter et al., 2008). Although there are ongoing efforts

to improve the techniques for characterizing membrane protein

structure, another layer of difficulty exists. Many transmembrane
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proteins are known to oligomerize within themembrane (Fotiadis

et al., 2006). Because oligomerization affects protein function—

either by enhancing stability or providing specific interactions

that tune activity (Cymer and Schneider, 2012)—there is a

need to characterize these higher-order structures to deepen

our understanding of biological function. However, because of

their size and complexity, the structure of membrane protein

oligomers remains challenging to capture experimentally.

Here we present an approach, based on pulsed electron para-

magnetic resonance (EPR) and Gd3+ spin labeling, that promises

to be a generally applicable tool to elucidate the structural

organization of membrane protein assemblies. We showcase

the implementation and strength of this approach by expanding

the structural understanding of the green light-absorbing proteo-

rhodopsin (G-PR) oligomer. G-PR is a seven-transmembrane

protein encoded by a gene that is widely prevalent inmarine bac-

teria (Béjà et al., 2000, 2001). G-PR likely acts as a light-driven

proton pump that enables bacteria to harvest solar energy in a

useable form (DeLong and Béjà, 2010), but it displays many

unique properties that suggest differences in mechanism or

function from the well-studied bacteriorhodopsin proton pump

(Hempelmann et al., 2011; Lörinczi et al., 2009; Schäfer et al.,

2009). Prior studies have demonstrated that G-PR assembles

into hexamers in both 2D crystalline lipids (Klyszejko et al.,

2008) and detergent micelle environments (Hoffmann et al.,

2010; Stone et al., 2013). Although the functional implications

of this assembly are still being investigated, few precise

details of the G-PR oligomer structure are currently available. A

recent crystal structure (Ran et al., 2013) reveals a doughnut-

shaped hexameric assembly for blue-absorbing proteorhodop-

sin (B-PR), a protein that is homologous to G-PR but differs in

its maximum absorption wavelength and photocycle timescale

(Hillebrecht et al., 2006; Xi et al., 2008). However, in G-PR hex-

amers, there has been only a single measurement of a short

interprotein distance, which identified a radial orientation of the

protein within the hexamer (Stone et al., 2013).

In the past decade, EPR distance measurements have

emerged as an important technique to characterize structure

in membrane proteins (Altenbach et al., 2008; Georgieva et al.,

2013; Hilger et al., 2005; Jeschke, 2013a; Matalon et al., 2013b;
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Figure 1. Structure of the G-PR Hexamer

and Spin Labels

(A) Model of the structure of the G-PR hexamer

based on the B-PR crystal structure (Ran et al.,

2013), G-PR monomer structure (Reckel et al.,

2011), cw EPR (Stone et al., 2013), and DEER

measurements (from this work). The positions of

the spin labels used in this study are shown at sites

177 and 58. Additionally, site 55, which was shown

to have a short interprotein distance in the cw EPR

measurements, is shown for reference.

(B) The 4MMDPA tag with a coordinated Gd3+ is

shown bound to the cysteine residue of a protein

(G1 side chain).

(C) The MTSL spin label is shown bound to the

cysteine residue of a protein (R1 side chain).
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McHaourab et al., 2011). EPR allows the precisemeasurement of

distances between spin labels attached to proteins or other bio-

molecules (Berliner et al., 2000). Specifically, double electron-

electron resonance (DEER) (Milov et al., 1981; Pannier et al.,

2000), a type of pulsed dipolar spectroscopy (PDS), allows mea-

surements of distances and their distributions up to 8 nm using

themost common spin labels based on nitroxide radicals (Borbat

and Freed, 2013). Spin labels are introduced site-specifically into

proteins through site-directed spin labeling techniques (Cornish

et al., 1994; Hubbell et al., 2000, 2013) that are compatible with

membrane proteins. The sparse distance information obtained

with EPR is especially important for studyingmembrane proteins

because their detailed global structure can be difficult to obtain.

Even for membrane proteins with known crystal structures, PDS

techniques can add significant value by probing structure in

diverse lipid and detergent environments (Georgieva et al.,

2013; Hänelt et al., 2013; Smirnova et al., 2007) that can influence

both membrane protein assembly and function (Gohon and Po-

pot, 2003; Marsh, 2008; Phillips et al., 2009).

It is, however, challenging to fully exploit traditional DEER

measurements for structural studies of assemblies comprised

of more than two proteins (i.e., oligomers larger than dimers).

When more than two nitroxide spins are dipolarly coupled, arti-

facts in the distance distribution arise because of multispin ef-

fects that are not taken into account in the standard DEER

data analysis (Jeschke et al., 2009). These artifacts complicate

the reliable determination of multiple interspin distances in the

same system, reducing the available structural information (Plio-

tas et al., 2012). Efforts have been made to eliminate multispin

effects through experimental (Junk et al., 2011) and data pro-

cessing (von Hagens et al., 2013) techniques. However, these

approaches may not eliminate multispin effects entirely, and

some methods require sacrifices to sensitivity.

To overcome these limitations while increasing the sensitivity

of the measurements, we complemented standard DEER mea-

surements using nitroxide spin labels with high-field DEER mea-

surements using spin labels based on Gd3+ chelates. Recent

work in a diverse collection of systems (Kaminker et al., 2012;

Lueders et al., 2011; Matalon et al., 2013a; Song et al., 2011;
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Yulikov et al., 2012) has demonstrated that Gd3+ offers many

advantages as an alternative spin label for high-field DEERmea-

surements (Goldfarb, 2012, 2014; Potapov et al., 2010b; Rait-

simring et al., 2007; Yagi et al., 2011). This manuscript extends

the capabilities of Gd3+ to include accurately resolving distances

between multiple neighboring proteins within a membrane pro-

tein oligomer by leveraging the reduction of multispin effects.

We investigate the structure of the G-PR hexamer in a frozen

solution of membrane-mimetic, surfactant micelles using two

different singly labeled protein mutants. One labeling site is

near the oligomer interface and another at the peripheral, third

intracellular (E-F) loop, as shown in Figure 1A. DEER measure-

ments using Gd3+ labels were performed at the W-band (95

GHz). We also employed traditional nitroxide-based DEER at

the X-band (9.5 GHz). As reported previously (Yagi et al.,

2011), W-band DEER measurements using the Gd3+ feature

improved absolute sensitivity compared with X-band measure-

ments with nitroxides. Multispin effects were found to substan-

tially disrupt the distance distributions in measurements with

nitroxides, whereas, for measurements with Gd3+ labels, they

did not exceed the experimental error. As a result, both nearest

neighbor and next-nearest neighbor distances were identified

reliably in the Gd3+-based DEER measurements. In addition to

the methodological advancements presented, these results pro-

vide a more complete description of the oligomeric interface and

the radial arrangement of G-PR within the hexamer. Using the

experimentally determined distances together with computer

modeling, we found that the G-PR oligomer structure agreed

with the recent crystal structure of the homologous B-PR (Ran

et al., 2013), offering a detailed picture of the G-PR hexamer.

Importantly, these measurements occur in a functionally active

(and potentially tunable) micelle environment and between flex-

ible loop regions that are not resolved by crystallography.

RESULTS

Experimental Approach
Measurements were made on spin-labeled G-PR solubilized in

b-dodecylmaltoside (DDM) detergent micelles with the hexamer
All rights reserved



Figure 2. DEER Results for 58G1 and 58R1

(A) Background-corrected, time domain W-band

DEER data of the 58G1 G-PR hexamer for 33%,

50%, and 80% Gd3+ loading along with the

calculated DEER traces. For clarity, the trace from

the 50% loading sample has been shifted down-

ward by �0.005. As described in Supplemental

Results, for 58G1 with 33% Gd3+ occupancy, a

polynomial background was necessary to achieve

physical distributions. a.u., arbitrary units.

(B) Background-corrected, time domain X-band

DEER data of the 58R1 G-PR hexamer with 33%

and 100% nitroxide labeling along with the calcu-

lated DEER traces.

(C) The distance distributions for 58G1 (from [A])

obtained utilizing a two-Gaussian distance model.

The relative populations of the short and long dis-

tance were fixed to be equal. The shaded regions

show an estimate of the range of distance distri-

butions that arise from varying the background

subtraction. This range is calculated as one SD

from the mean distribution determined from a se-

ries of possible background subtractions (see

Supplemental Results).

(D) The distance distributions for 177R1 (from [B])

obtained utilizing a two-Gaussian distance model.

The relative populations of the short and long dis-

tance could not be fixed for 100% R1-labeled samples. The relative population of r1 was 70% for the 100% labeled oligomers. The shaded regions show an

estimate of the range of distance distributions that arise from varying the background subtraction. This range is calculated as one SD from the mean distribution

determined from a series of possible background subtractions (see Supplemental Results).

See also Figures S1–S4 and Tables S1 and S2.
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isolated through size exclusion, fast protein liquid chromatog-

raphy (Stone et al., 2013). Single cysteine mutations were intro-

duced at residues Trp58 (located at the beginning of the B helix)

and Thr177 (located on the loop between the E and F helices).

The choice of these sites was guided by their use in a previous

study utilizing nitroxide spin labeling to probe the G-PR oligomer

interface. In that study, continuous wave (cw) EPR measure-

ments of the nitroxide label at site Ser55 indicated that G-PR

organizes radially and that residue 55 is near the center of the

oligomer (with a separation of �1.6 nm between adjacent pro-

teins) (Stone et al., 2013).

This study focuses on determining the interprotein distances

for the two sites (58 and 177) that exceed the 2.0 nm ceiling for

distance measurements viable by cw EPR lineshape analysis

with nitroxides (Jeschke, 2002). This sparse, yet strategically

chosen set of interprotein distances can then offer constraints

to construct amodel of theG-PR organization and the oligomeric

interface. Based on previous work (Klyszejko et al., 2008; Stone

et al., 2013), we expected site 58 to be located near the center of

the hexamer and site 177 at a solvent-exposed, peripheral

location of the hexamer (Figure 1A).

The Gd3+-labeled oligomers studied with W-band DEER were

prepared by binding the 4-mercaptomethyl-dipicolinic acid

(4MMDPA) tag (Su et al., 2008) to the protein, whereas identical

G-PR oligomers labeled with S-(2,2,5,5-tetramethyl-2,5-dihy-

dro-1H-pyrrol-3-yl) methyl methanesulfonothioate (MTSL) were

prepared and studied with X-band DEER. To distinguish the

two labels, we refer to the cysteine-bound MTSL as R1 (as

commonly used in the literature; Hubbell et al., 2000) and to

the cysteine-bound 4MMDPA with coordinated Gd3+ as G1 (Fig-

ures 1B and 1C). To control for multispin interactions, spin dilu-
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tions were used where only a percentage of the protein (ranging

from 33%–100%) is labeled to reduce the average number of

spins per hexamer (Junk et al., 2010, 2011).

When statistically labeling a hexamer, multiple interprotein

distances are expected to contribute to the measured distance

distributions. Each protein in the hexamer has two nearest neigh-

bors (r1), two next-nearest neighbors (r2), and the diametrically

opposed protein (r3). For a hexagonal symmetry, these distances

should occur with probability ratios of 2:2:1 (i.e., equal probabil-

ity for the two shorter distances), whereas the interprotein dis-

tances should have the ratios r1:r2:r3 = 1:1.73:2.

DEER Results and Observation of Distances between
Multiple Neighbors
Background-corrected, time domain DEER traces of 58G1 with

33%, 50%, and 80% Gd3+ occupancy are shown in Figure 2A

(raw data are shown in Figure S2 [available online], and the Sup-

plemental Results describe the fitting procedure). The sample

with 33% Gd3+ occupancy had a lower Gd3+ concentration

(80 mM) than the other samples (150–200 mM), resulting in a lower

signal-to-noise ratio (SNR). A distance distribution consisting of

the sum of two Gaussian distributions with equal populations (a

two-component Gaussianmodel in DeerAnalysis; Jeschke et al.,

2006) provided a very good fit to the data, as shown in Figure 2A.

Utilizing a Gaussian distribution for each interprotein distance al-

lows the relative weight of the two distances to be constrained.

The choice of a two-Gaussian fit instead of Tikhonov regulariza-

tion is justified by the consistent observation of two dominant

distances in the Tikhonov regularization. These two distances

are reproduced by this two-Gaussian component model that

better matches the physical organization of the protein hexamer
86, November 4, 2014 ª2014 Elsevier Ltd All rights reserved 1679



Figure 3. DEERResults for 177G1 and 177R1

(A) Background-corrected, time domain W-band

DEER data of the 177G1 G-PR hexamer for 33%,

50%, and 80% Gd3+ loading along with the

calculated DEER traces. For clarity, the trace for

the sample with 80% Gd3+ occupancy has been

shifted upward by �0.005.

(B) Background-corrected, time domain X-band

DEER data of the 177R1 G-PR hexamer with 33%

and 100% nitroxide labeling along with the calcu-

lated DEER traces.

(C) The distance distributions for 177G1 (from [A])

obtained utilizing a two-Gaussian distance model.

The relative populations of the r1 and r2 distance

were fixed to be equal. The shaded regions show

an estimate of the range of distance distributions

that arise from varying the background subtrac-

tion. This range is calculated as one SD from the

mean distribution determined from a series of

possible background subtractions (see Supple-

mental Results).

(D) The distance distributions for 177R1 (from [B])

obtained utilizing a two-Gaussian distance model.

For the 33% labeled 177R1, Tikhonov regulariza-

tion was first performed and subsequently fit to a

two-Gaussian component model (see text and Supplemental Results). The longest peak (�8.0 nm) is beyond the range accessible in our experiments and,

therefore, is not considered. The relative populations of the short and long distance were fixed and equal. The shaded regions show an estimate of the range of

distance distributions that arise from varying the background subtraction. This range is calculated as one SD from the mean distribution determined from a series

of possible background subtractions (see Supplemental Results).

See also Figures S1–S4 and Tables S1 and S2.
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from the literature. The resulting distance distributions for 58G1

are shown in Figure 2C. Because the determination of the correct

background subtraction can be challenging (Jeschke and Poly-

hach, 2007), a series of different backgrounds were tested by

varying the starting point of the background fit. The distance dis-

tribution resulting from the background subtraction that best fit

the data is shown as a line in Figure 2C. The shaded regions in

the figure indicate the range of distributions determined by aver-

aging all possible background-subtracted spectra that fit the

data well (see details in Supplemental Results). The 58G1 sam-

ples all give very similar distance distributions with maxima at

2.2 and 3.9 nm. For the sample with 33% Gd3+ occupancy, the

error due to background subtraction is significantly larger than

for other samples (resulting in a much larger range of possible

distributions). We attribute this to the lower SNR and associated

difficulties in the background decay fit.

The DEER results for 58R1 with 33% and 100% nitroxide la-

beling are shown in Figures 2B and 2D (raw data are shown in

Figure S2). Here the short phase memory time (Figure S3) pre-

vented recording of the DEER traces for long evolution times

and, therefore, compromised the SNR. For the 100% nitroxide-

labeled samples, we could not fit the data well with two equally

weighted Gaussian distributions. Therefore, the relative popula-

tions of r1 and r2 were also allowed to vary, and the best fit value

for the population of r1 was found to be 70%. The distance dis-

tributions (Figure 2D) reveal that the r2 distance is significantly

obscured for both 33% and 100% nitroxide labeling. Further-

more, the distance distributions change significantly as the de-

gree of spin dilution is changed. This is a typical manifestation

of multispin effects in DEER results. Multispin interactions have

been shown to be more disruptive in high-order oligomers than
1680 Structure 22, 1677–1686, November 4, 2014 ª2014 Elsevier Ltd
in lower-order oligomers (Giannoulis et al., 2013), which explains

why the effect is so strong in these hexameric assemblies.

Nevertheless, the low SNR and short dipolar evolution times

can also contribute to these effects. The confidence estimates

suggest that the suppression of the r2 distance is not the result

of the background subtraction. Attempts to fit the G1 and R1

data to three Gaussian distributions with fixed relative weights

of 2:2:1 did not yield better results than with the simplified

assumption of equal populations for the two smaller distances,

and r3 could not be resolved with either of the labels used.

Despite the obscured r2 distance observed using the R1 la-

bels, the two mean distances of the distance distributions are

similar for the R1- and G1-labeled samples at all spin dilutions.

The maxima of the best fit distance distributions, averaged

over all 58R1 and 58G1 results, are r1 = 2.3 ± 0.1 nm and r2 =

3.9 ± 0.2 nm. The average value of the ratio of r1/r2 is

k58 =
r1
r2
= 1:71±0:03;

which is in good agreement with the expected value of 1.73 for a

perfect hexamer.

Background-corrected DEER data for 177G1 with 33%, 50%,

and 80% Gd3+ occupancy are presented in Figure 3A (raw data

are shown in Figure S2). The distance distributions obtained us-

ing a two-Gaussian component model with equal populations

are shown in Figure 3C. Again, the r1 and r2 distances are both

clearly discernable in the distance distributions for 177G1,

although sample-to-sample variations in the width and location

of the peak are evident. The r1 values for 33%, 50%, and 80%

Gd3+ occupancy are 3.7, 3.9, and 3.9 nm, and the r2 values are

5.5, 6.0, and 5.5 nm. The variation from background subtraction
All rights reserved
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contributes some uncertainty to the distributions but cannot

entirely account for these discrepancies. We do not attribute

the additional variation to multispin effects because multispin

effects were not evident for 58G1, which has much shorter inter-

protein distances. Furthermore, the relative populations of the

two distances remained equal, as they should. Instead, we credit

the variation in the distance distributions to the relatively broad

distributions, the limited dipolar evolution times, and an associ-

ated uncertainty in background removal because of the pres-

ence of r3, which is not resolved but may contribute to the tail

of the distance distribution. Further discussion regarding the un-

certainty in the distance distribution is given in the Supplemental

Results.

The results for 177R1with 33% and 100% labeling are given in

Figures 2B and 2D. For 177R1 with 100% nitroxide labeling (Fig-

ure 3D), a good fit was obtained using the two-Gaussian compo-

nent model with equal r1 and r2 populations. However, although

the r2 distance is more easily discernable than that for the 58R1

sample, the r2 distribution is still broadened substantially,

causing it to appear weaker than expected. To achieve a physi-

cally reasonable distribution for distances in 177R1 with 33% ni-

troxide labeling, Tikhonov regularization was used to extract the

distance distribution. This distribution was then fit to a two-

Gaussian component model with equal r1 and r2 populations to

determine the r1 and r2 distances (see Supplemental Results

for details). The longest distance (�8 nm) observed in the Tikho-

nov regularization was discounted because it exceeds the range

of distances that can be reliably determined in these measure-

ments. For 33% nitroxide labeling of 177R1, the r2 distance

distribution is not obscured compared with the r1 distance. We

again see significant differences in the distance distributions

when varying the degree of nitroxide spin dilution. For both

177R1 samples, the two distances can be well described with

equal populations, but the 100% nitroxide-labeled sample still

shows a significantly broadened r2 distance distribution. As

with site 58, r3 is not observed in the measurements of either

177R1 or 177G1. The r1 and r2 distances, however, are in good

agreement with the 177G1 data.

The average maxima in the distance distributions of 177G1

and 177R1 are r1 = 3.8 ± 0.1 nm and r2 = 5.7 ± 0.2 nm. The

average value of the r2/r1 ratio was k177 = 1:51± 0:06, significantly

lower than the expected k= 1.73 that would yield a distance of

r2 = 6.6 nm. This �0.9 nm difference in the mean r2 value is

outside of the error resulting from background subtraction. The

implication of this deviation is discussed later.

If the relative populations of the two distances in the distribu-

tion represent physically meaningful results, one expects the r1
and r2 distances to appear with equal likelihood for the PR hex-

amer. For this reason, the two-Gaussian component fits used for

the 58G1 and 177G1 data and themajority of the 58R1 and 58G1

samples employed fixed and equal populations of the two dis-

tances (Dalmas et al., 2012). However, reasonable fits for the

100% nitroxide-labeled 58R1 data required that the populations

be allowed to vary. Generally, R1-labeled samples (Figures 2D

and 3D) show a second neighbor distance (r2) whose distribution

is broadened and reduced in intensity, particularly for 58R1. The

dominance of the short interprotein distances indicates the pres-

ence of multispin effects in nitroxides (Jeschke et al., 2009; Junk

et al., 2011). The observation that the artificial exaggeration of
Structure 22, 1677–16
the shorter distance is more severe for the closer 58R1 samples

than the more distant 177R1 samples is consistent with this

concept (Figure 2D versus Figure 3D). Indeed, the strength of

the multispin effects in 100% nitroxide-labeled 58R1 explains

why the data cannot be successfully described with equal r1
and r2 populations. The existence of multispin effects in nitro-

xides is why the next-nearest neighbor distance is sometimes

disregarded in the literature (Pliotas et al., 2012). Interestingly,

spin dilutions do not fully eliminate the broadness of the second

peak for 58R1, perhaps because of residual multispin effects.

Some significant multispins effects may persist in these

oligomers with short interprotein distances, given the statistical

probability of oligomers containing more than two spin-labeled

proteins. This may be exacerbated if the exchange of the protein

monomers within the G-PR hexamer-micelle complex is slow,

resulting in less than complete mixing of nitroxide-labeled and

unlabeled G-PR during sample preparation.

By contrast, when using spin dilutions, the distance distri-

butions for 177G1 and 58G1 change significantly less than

with nitroxide-labeled oligomers. Variations that emerge for

177G1 are attributable to experiment factors, including the back-

ground subtraction method. Therefore, multispin effects are not

observed to significantly affect the DEER results of Gd3+-labeled

samples. The overall result is that the distance distributions from

G1-labeled oligomers offer a clearer determination of the pair

of interprotein distances (r1 and r2) without requiring dilution.

The insensitivity of Gd3+–based DEER to multispin effects re-

sults from a small modulation depth (l) of only 1%–3%. The

modulation depth is a measure of the probability to flip a spin

with the pump pulse of the DEER experiment. It is proportional

to the width of the inhomogeneous EPR lineshape and is, there-

fore, significantly smaller for Gd3+ than for nitroxides (Raitsimring

et al., 2007). The strength of multispin interactions scales with

the modulation depth. Therefore, the three-spin effect will fall

off with l2, whereas higher-order couplings fall off more rapidly

(Jeschke et al., 2009; Junk et al., 2011). Thus, the small l of

Gd3+ reduces the distortion of a distance distribution because

of the multispin effect.

Data processing techniques exist in the literature to reduce

the impact of multispin effects on DEER data (von Hagens

et al., 2013). The application of this method to our DEER data

(in the DEERAnalysis program; Jeschke, 2013b) for nitroxide-

labeled samples was successful in better resolving the r2 dis-

tance (Figure S4 and Supplemental Results). In the case of

100% nitroxide-labeled 58R1, the relative population of the r1
distance was shifted from 70% to 56% (close to the expected

50%). However, the r2 distance distribution remained broad, ap-

pearing as a shoulder to the dominant r1 distance distribution.

For the case of 100% nitroxide-labeled 177R1, application of

the multispin correction shifted the r2 distances to 6.6 nm, iden-

tical to the expected value of 6.6 nm for a perfect hexameric

arrangement. The long dipolar evolution time (�5.8 ms) achieved

for the 100% nitroxide-labeled 177R1 sample may explain why

this longer distance can be observed when multispin effects are

eliminated (see Supplemental Results for further discussion). As

expected, this specialized processing did not alter the results

for Gd3+-labeled proteins, further supporting the observation

that multispin effects are reduced in DEER results using Gd3+

labels.
86, November 4, 2014 ª2014 Elsevier Ltd All rights reserved 1681



Figure 4. Distance Distributions from the

Homology Model

Calculated distance distributions from spin labels

in the homology model of G1-labeled G-PR

described in the text. Distributions of nearest

neighbor Gd3+-Gd3+ distances (r1) and next-

nearest neighbors (r2) are shown.

(A) Distributions for 58G1 using a model with C6-

symmetric labels.

(B) Distributions for 177G1 using a model with

nonsymmetric labels.

See also Figure S5.
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Distance Limits
The DEER measurements in Figures 2A and 2B show that

longer dipolar evolution times (Tevo, corresponding to the full

length of the time axis) of 3.6–4.0 ms were achieved in 58G1

than the 1.4–1.9 ms obtained for 58R1. Longer dipolar evolution

times are extremely advantageous because they allow proper-

ties of measured distances (e.g., the mean distance, the width

of the distribution) to be confidently reported out to longer dis-

tances. An accepted convention (Jeschke, 2013b) is that, for a

2 ms evolution time, the assignment of the mean distance and

the distribution width is reliable out to 4 nm and that the

mean distance alone is reliable out to 5 nm. These distance

limits scale with

�
Tevo

2ms

�1
3

:

Therefore, given the total evolution times for 58R1 (Tevo � 1:4 ms

for 100% labeling), we can approximate that the mean distance

measured can be trusted out to �4.4 nm, whereas the width of

the distribution is only accurate out to �3.5 nm. For G-PR

labeled at site 58, r2 �3.8 nm lies between these two distance

limits. By comparison, the >3 ms evolution times achieved in

the 58G1 samples allow us to trust the mean distance as well

as the width of the distribution out to at least 4.8 nm (and the

mean distance alone to at least 6.0 nm). For both 177R1 and

177G1, the evolution times were at least �4 ms, allowing us to

trust the mean distances out to at least 6.2 nm, just beyond

the measured r2 distance of 5.7 nm. However, these dipolar

evolution times may still limit the reliable determination of the

r2 distance, resulting in an artificial reduction of r2 from the ex-

pected �6.6 nm (Supplemental Results). Further details of these

distance limits can be found in Supplemental Results, along

with Table S1, which details the confidence limits for all samples

studied.

The maximum dipolar evolution time is limited by the spin

echo decay rate. Direct measurements (Figure S3 and Supple-

mental Results) show that the echo decays to 10% of its initial

intensity within 1.9–4.9 ms in nitroxide-labeled samples (58R1

and 177R1) but within 3.6–4.2 ms for Gd3+-labeled samples

(58G1 and 177G1). These results suggest that, for Gd3+-labeled

samples, the phase memory time, and, therefore, also the

maximum Tevo, is less sensitive to the protein environment

than for nitroxide labels. Therefore, G1 labels may be more ver-

satile by maintaining evolution times sufficiently long to identify
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long interspin distances at a wider range of surface-exposed

protein sites.
Structural Modeling
To directly relate the distances obtained from the Gd3+ spin la-

bels to the structure of the G-PR oligomer, we also calculated

the most probable distance distribution between G1 labels utiliz-

ing a homology model based on the crystal structure of the B-PR

hexamer (Ran et al., 2013) (see Experimental Procedures and

Supplemental Results for details). The spin labels were grafted

onto the cysteine residue of the labeling sites, and side-chain

conformers were generated by randomly varying dihedral angles

within ± 10� around preferred rotamer states. Only rotamers that

were void of severe steric clashes with the protein were used in

further analyses. Because site 177 is located in the E-F loop re-

gion of G-PR, which was unresolved in the B-PR crystal struc-

ture, the structural model of the E-F loop from a nuclearmagnetic

resonance (NMR) structure of the G-PR monomer was utilized

(Reckel et al., 2011). We hypothesized that labels may arrange

cooperatively and assume symmetric orientations. Therefore,

for each labeling site, two distance distributions were calculated,

assuming either C6-symmetric labels or uncorrelated, nonsym-

metrical labels. Computed spin label distance distributions of

58G1 and 177G1 for r1 and r2 are shown in Figure 4 (see Figure S5

for all calculated distributions).

For the structurally buried residue Trp58 (Stone et al., 2013)

the distance distribution with symmetrically related labels, hav-

ing rather narrow distances distributions and maxima at 2.3 nm

and 4.0 nm, agrees better with the experimental results than

the nonsymmetrical labels. These distances are in excellent

agreement with the experimental values of r1 = 2.3 ± 0.1 nm

and r2 = 3.8 ± 0.2 nm. In addition, the distance distributions

are relatively narrow, with a full width at half max (FWHM) of

z0.3 andz0.5 nm for r1 and r2, respectively. An increasedwidth

of r2 with respect to r1 is also consistent with the experimental

results obtained with 58G1. The solvent-exposed label at site

Thr177 is intrinsically more flexible (Hussain et al., 2013), leading

to significantly broader distributions of distances (z1.5 nm

FWHM) with maxima at 4.0 and 7.0 nm. Here the nonsymmetric

model showed better agreement with the experimental results

than the symmetric one. The short distance is in good agree-

ment with the experimental result of r1 = 3.8 ± 0.1 nm. However,

the next-nearest neighbor distance from this model is �7.0 nm,

which is larger than the experimental value of r2 = 5.7 ± 0.2 nm.
All rights reserved
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This experimentally verified, homology-based model is shown in

Figure 1A.

The structural model generated from the B-PR hexamer pro-

vides an estimate for the furthest interprotein distance (r3) ex-

pected (Figure S5), giving context to the absence of this distance

in ourmeasurements. At site 177, themodeling indicates that r3 >

8 nm, which is generally beyond the range of DEER experiments.

In this case, r3 is probably absorbed in the background decay,

adding some uncertainty to the process of background subtrac-

tion. However, for site 58, the model suggests r3 �4.5–5 nm,

which approaches the distance limit that is reliably detectable

in these DEER measurements (Table S1). Because we never

observe a third distance experimentally, it is likely that the

weak dipolar oscillations from the r3 are either absorbed by the

background correction or, more likely, slightly disrupt the r2 dis-

tance distribution.

DISCUSSION

This DEER study improves the previous coarse model of a spe-

cific radial orientation of G-PR in a hexameric assembly (Stone

et al., 2013) to a more detailed structure that largely agrees

with the crystal structure of the B-PR oligomer (Figure 1A). For

site 58, the experimental r1 and r2 distances both agree well

with modeling. However, although the experimental values of

r1 in 177G1 agree well with the model, the experimental r2 dis-

tances are shorter. This may occur because the model does

not account for the intrinsic flexibility of the E-F loop site, which

appears flexible in the G-PR monomer structure (Reckel et al.,

2011). An alternative possibility is that both multispin effects

and insufficient dipolar evolution times prevented proper resolu-

tion of the r2 distance out to 6.5 nm (Supplemental Results).

The functional (and possibly structural) distinction between B-

PR and G-PR hinges on B-PR existing in marine bacteria deeper

in the photic zone of the ocean (Béjà et al., 2001). The tuning of

the absorption wavelength is accomplished by replacing the key

residue Leu105 in G-PR with glutamine in B-PR (Wang et al.,

2003). However, many of the putative oligomeric interface resi-

dues (e.g., B helix and flanking loops) are conserved for G-PR

and B-PR. Therefore, the agreement between distance mea-

surements in G-PR and the B-PR crystal structure is consistent

with the structural similarity of these homologous proteins.

The use of Gd3+ spin probes side by side with nitroxide probes

demonstrates the strengths of Gd3+-based DEER measure-

ments. As discussed in detail below, DEER measurements at a

high magnetic field offer improved sensitivity over measure-

ments of nitroxides at low fields. If required, tuning spin dilution

is exceptionally simple with the 4MMDPAGd3+ tag because it in-

volves only the variation of the amount of Gd3+ added to the sam-

ple without having to alter the protein composition of the sample.

Additionally, Gd3+ labels appear to preserve long evolution times

in a wide variety of labeling locations, offering improved versa-

tility in environmentally heterogeneous biomolecules.

Most critically, Gd3+ spin labels are less susceptible to the

multispin effects that are highly disruptive for DEER-based struc-

tural studies of higher-order oligomers, such as the hexameric

G-PR (Giannoulis et al., 2013). Therefore, the scope of DEER

measurements of oligomer samples is expanded significantly.

Although approximate analytic corrections can be applied in
Structure 22, 1677–16
data processing to eliminate multispin effects (von Hagens

et al., 2013), they did not fully eliminate the broadness of the r2
distribution in the 58R1 system (Figure S4). Modifications to

the experiment are also possible to reduce multispin effects

when using nitroxide probes. For instance, the use of longer mi-

crowave pulses reduces l, which reduces multispin effects.

Alternatively, spin dilution, which helped identify the multispin

effects in this study, can be employed to curtail multispin effects.

However, both of these approaches sacrifice sensitivity andmay

not eliminate the multispin effect entirely. Additionally, spin dilu-

tion of nitroxide-labeled protein complexes requires the produc-

tion of analog-labeled or wild-type protein samples, and the

subsequent physical mixing of the labeled and the unlabeled

protein samples may not yield the desired statistical mixtures

within the oligomers. Utilizing Gd3+ as an alternative spin label

makes the sacrifices of signal unnecessary because it inherently

reduces multispin effects to allow the robust determination of

multiple distances.

In terms of sensitivity, the W-band measurements with Gd3+

required an order of magnitude less sample volume than the ni-

troxide X-band measurements, corresponding to �0.5 nmol of

sample. Alternative Gd3+ spin labels based on the 1,4,7,10-tet-

raazacyclododecane-1,4,7,10-tetraacetic acid chelate offer bet-

ter sensitivity because of a narrower width of the Gd3+ central

transition. DEER of samples with spin concentrations as low as

25 mM has been performed on these chelates (Kaminker et al.,

2012). Although Gd3+-Gd3+ DEER measurements at X-band

suffer from low sensitivity and are not recommended, Q-band

(34 GHz) measurements are attractive, as reported in several

recent studies (Song et al., 2011; Yulikov et al., 2012). For

Gd3+, W-band measurements are expected to exhibit a better

absolute sensitivity than Q-band measurements. A recent study

estimated a factor of about three (Raitsimring et al., 2013).

W-band DEER with nitroxides also features high sensitivity, pro-

vided that sufficient microwave power is available to generate

short enough pulses (Goldfarb et al., 2008; Reginsson et al.,

2012). However, there is a high likelihood of orientation selection

that prevents a straightforward extraction of the distance distri-

bution when employing nitroxides at the W-band (Polyhach

et al., 2007).

Although the molecular-level detail obtained with crystallog-

raphy or NMR is not rivaled by PDS measurements, the power

of these studies lies in the ability to apply them to large and/or

complex protein systems and in a variety of sample environ-

ments. The spin labeling approach presented here is able to

probe a functionally relevant loop region that undergoes a major

conformational transformation upon light activation (residue 177

on the E-F loop) (Hussain et al., 2013) but cannot be resolved in

most crystal structures given its dynamic nature (Columbus and

Hubbell, 2002). Unlike crystallography, PDS also confers the

capability to probe distances in a variety of membrane-mimetic

surfactant conditions that may alter the oligomeric distribution

and interprotein packing (Georgieva et al., 2013; Hänelt et al.,

2013). DEER experiments utilizing Gd3+-based spin labels can

extend beyond this work, characterizing the hexamer of G-PR

to enable structural studies of other membrane protein

oligomers.

The application of Gd3+-based PDS in membrane protein as-

semblies can help fill an important gap in studies of membrane
86, November 4, 2014 ª2014 Elsevier Ltd All rights reserved 1683
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proteins. The organization of membrane proteins into oligomers

is observed in a wide variety of membrane protein systems.

For instance, under physiological conditions, many G protein-

coupled receptors form assemblies (González-Maeso, 2011),

but the structural details of their oligomeric interface remain

largely unknown (Ferré and Franco, 2010; Fotiadis et al., 2006).

Although oligomerization is thought to tune protein function

and/or enhance protein stability (Essen et al., 1998; González-

Maeso, 2011), the precise functional role of oligomerization re-

mains debated, especially for a-helical transmembrane proteins

such as PR, in which themonomer appears to have all the neces-

sary components for function (Cymer and Schneider, 2012).

More generally, the nature of protein-protein interactions and

the higher-order structure of multiple proteins in oligomers or

during aggregation are important biological factors that can be

difficult to quantify. This is particularly true for multimeric trans-

membrane protein assemblies. Their largely hydrophobic char-

acter can be prohibitive for crystallization, and their large size

and the necessity for a membrane-mimetic surfactant environ-

ment complicates standard NMR analysis. Gd3+ labeling can

provide the full power and versatility of DEER measurements

to study these immensely important oligomeric membrane

proteins.
EXPERIMENTAL PROCEDURES

Preparation of Proteorhodopsin Hexamer Samples

The purification and expression of PR followed methods in the literature (Hus-

sain et al., 2013; Stone et al., 2013). The BAC31A8 G-PR gene (provided by

GreggWhited, Genencor) for green-absorbing proteorhodopsin with a 63 his-

tidine tag at the C terminus and the naturally occurring cysteines (residues 107,

156, and 175) replaced with serines was subcloned into a pTricHis2 plasmid.

The cysteine mutations have been shown to not affect overall function (Diou-

maev et al., 2003; Krebs et al., 2002; Stone et al., 2013). Further mutagenesis

modified the glutamic acid at residue 108 to a glutamine, which extends the

M-intermediate state of the photocycle by eliminating a proton acceptor site

(Dioumaev et al., 2003; Xi et al., 2008), it but is not expected to affect the olig-

omer structure. Single cysteine mutations were introduced in the proteins at

residues Trp58, and Thr177. Descriptions of the preparation of single cysteine

mutants from the plasmid and expression of the protein can be found in Stone

et al. (2013).

Purification of G-PR and labeling with nitroxide radicals followed Stone et al.

(2013). For labeling using Gd3+, 4MMDPA was used (unmodified from Cedar-

lane) following previous literature (Potapov et al., 2010b; Su et al., 2008). Both

MTSL-labeled and 4MMDPA-labeled G-PR were further purified using size

exclusion chromatography with a Sephadex 200 column on a fast protein

liquid chromatography instrument (Akta, GE Healthcare). For these experi-

ments, only the fractions identified previously by light scattering as being hex-

amers in DDM micelles were used for DEER measurements (Stone et al.,

2013). The solvent was exchanged for 50 mM Tris buffer made with D2O con-

taining 0.05 weight percent DDM, and then the solution was concentrated.

Gd3+ is bound to the 4MMDPA tags through stoichiometric addition of

GdCl3 in deuterated buffer following buffer exchange.

Spin-diluted oligomers were generated for both the G1 and R1 samples. Di-

lutions of 177R1 and 58R1 were prepared by mixing unlabeled G-PR (with no

cysteine mutations) with nitroxide-labeled G-PR under conditions that

encourage breaking and reforming of interprotein bonds to obtain a statistical

dilution (Supplemental Results). Alternatively, for Gd3+-labeled PR samples,

the Gd3+ label concentration was controlled by maintaining complete

4MMDPA labeling but varying the amount of GdCl3 added to the solution.

This dramatically simplifies the measurement of a series of spin dilutions and

ensures statistical labeling. The maximum nominal Gd3+ loading level utilized

was 80% to avoid any chance of free Gd3+ in solution (Gordon-Grossman

et al., 2011). The samples (both R1 and G1) were diluted to 30:70 d-glycer-
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ol:D2O buffer to ensure the formation of a good glass when frozen by immer-

sion into liquid nitrogen. The estimated spin concentration (as opposed to the

protein concentration) was maintained between 150–200 mM for all samples,

except for 58G1 with 33% Gd3+ occupancy, which was measured at 80 mM.

Optical absorption spectroscopy verified that green light absorption was

maintained for the mutated and spin-labeled G-PR variants studied, and

only slight shifts in absorption wavelength were observed (Supplemental Re-

sults). Furthermore, prior time-resolved optical absorption measurements

demonstrate that the main photoactivation properties of slowed photocycle

PR are preserved upon mutation and spin labeling as long as green light

absorption is present (Hussain et al., 2013). Therefore, we do not expect the

overall oligomeric structure studied here to be compromised by either muta-

tion or spin labeling.

X-Band and W-Band DEER Measurements

W-band (95 GHz) pulsed EPR measurements on the Gd3+-labeled protein

were carried out at 20 K using a home-built spectrometer (Goldfarb et al.,

2008) with 2-3 ml of sample. X-band pulsed EPR (9.5 GHz) measurements

were performed at 50 K on a Bruker ELEXSYS E580 spectrometer with 50–

60 ml of sample. The ‘‘zero’’ dead time, four-pulse DEER sequence was used

for all measurements (Pannier et al., 2000). Phasememory times and echo-de-

tected EPR spectra were measured using a two-pulse spin echo sequence.

Further details of the pulse sequences are described in the Supplemental

Results, and the spectral locations of the pulses are shown in Figure S1.

The raw DEER data were processed using DEERAnalysis.(Jeschke et al.,

2006). Although the Gd3+ spin is S = 7=2, the analysis method of approximating

the Gd3+ DEER data using an S = 1=2 formalism has been discussed and justi-

fied previously (Potapov et al., 2010a, 2010b; Raitsimring et al., 2007).

Structural Model Building

A homology model of G-PR was constructed with the Modeler software (�Sali

and Blundell, 1993) using the homologous B-PR structure (Protein Data

Bank [PDB] ID code 4JQ6; Ran et al., 2013) as a template for the protein

core structure. Sequences were aligned using ClustalX (Larkin et al., 2007),

and missing loop regions were modeled based on the solution NMR structure

of G-PR (PDB ID code 2L6X; Reckel et al., 2011). During model refinement,

symmetry restraints were applied to enforce C6 symmetry of the model. A total

of 250 models was computed, and the final model was chosen based on the

molpdf score.

To assess the accuracy of the Gd3+-Gd3+ DEER distance measurements,

we modeled the distance distribution by grafting the Gd3+-4MMDPA tag

onto the cysteines at sites 58 and 177 of the G-PR homology model using a

procedure described previously (Kaminker et al., 2012). To account for

possible inaccuracies in the homology model, van der Waals radii in these

calculations were scaled down by one-third for the buried site 58 but assumed

the normal values for the solvent-exposed site 177. Further work was done to

account for possible effects of symmetry. Details of the modeling are shown in

the Supplemental Results and Figure S5.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Experimental Procedures, five figures, and two tables and can be found with

this article online at http://dx.doi.org/10.1016/j.str.2014.09.008.
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