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This work addresses the question of whether it is possible to define simple pairwise interaction terms
to approximate free energies of proteins or polymers. Rather than ask how reliable a potential of
mean force is, one can ask how reliable it could possibly be. In a two-dimensional, infinite lattice
model system one can calculate exact free energies by exhaustive enumeration. A series of
approximations were fitted to exact results to assess the feasibility and utility of pairwise free energy
terms. Approximating the true free energy with pairwise interactions gives a poor fit with little
transferability between systems of different size. Adding extra artificial terms to the approximation
yields better fits, but does not improve the ability to generalize from one system size to another.
Furthermore, one cannot distinguish folding from nonfolding sequences via the approximated free
energies. Most usefully, the methodology shows how one can assess the utility of various terms in
lattice protein/polymer models. @001 American Institute of Physic$DOI: 10.1063/1.1350575

I. INTRODUCTION chanical ensemble or, at least an approximation to one. This
work addresses a fundamentally different question. If we are
Nature reflects many-body interactions and ensemble av;ot limited to a construction based on statistical mechanics,
erages, but practical calculations usually rely on pairwisean any arbitrary pairwise function be fit to reproduce free
interactions and cheap approximations. For example, one isnergies? In other words, what are the limitations of pairwise
often interested in properties such as protein or polymer Sta&pproximations, without entering the debate over the appli-
bility or phase behavior. These are related to free energy, blétability of Boltzmann-based force fields?
tr_lis is t_)arely aqcessible, even with much patience and long This can be addressed by taking a system whose Hamil-
simulations. This has led to the use of potentials of meaR, s consists of pairwise interactions and seeing whether

force and debates as to how they can be formulated. In thiﬁa]e true free energya property of the ensemblean be

work, we consider a different problem. Given a model Sys'meaningfully approximated by a single structiiee ground

tem, how good can a potential of mean force possibly be Statg using an appropriately reparametrized Hamiltonian.

fSlncz one never kr:owi i ah_bettert atpprt'c?[)r(]lmanon can t.bel'he reparametrization can be done by fitting, rather than as-
ound, can one construct machinery to test the approxima IOQuming Boltzmann statistics. For simple functions, regres-

? ) , :
to free energy sion methods guarantee a best fit and, by construction, an-

Th.'s subject has b_ecome particularly top|cal_ n prOte'nswer the question of just how good a potential of mean force
modeling where there is an abundance of potentials of mean

force calculated from archived protein structuté€On one can_ﬁ:ai.s strateqv requires a svstern where one knows the
side, these have been interpreted as providing realistic Helm- gy red Y

holtz free energiedOn the other side, it has been stated that ree energy exa<_:tly, bl.Jt this can be found for 5|mpl_e models
sgch as a two-dimensional lattice polymer or protein. There,

the resulting quantities have no bearing on properties such a . L ) )
gq g on prop ne can define the Hamiltonigby stating the potential en-

stability* It has also been noted that accurate free energie% d calculate the f b hausti
cannot be correctly extracted from collections of proteinergw and caiculate the free energy by exhaustive enumera-

structure< tion (visiting every possible conformatipnDoing this for
That debate is centered on the question of whether gvery sequence of a given length provides all the information

disparate collection of protein structures is a statistical me'€¢€SSary for th.e fitting Qperatlon.
Two-dimensional lattice macromolecules may not be of

great practical use, but the machinery can be used to measure
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bElectronic mail: Thomas. Huber@anu edu.au certain properties and test models. For example, potentials of

9Electronic mail: mplathe@mpip-mainz.mpg.de mean force sometimes show an artlfactual_ size dep(_endence.
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A a) One can continue in this vein and add other terms to try to

P

% capture the entropic contributions. For example, one could

o base a term on second-nearest neighbors on the lattice. Re-

§ sults from such calculations are given in the next section.

§ The calculations below are simplified by considering a

© subset of the fitting problem particularly relevant to proteins.

E Most protein sequences do not fold to a specific structure and

g_ are not seen in nature. The set of viable “folding” protein

g - sequences is actually tiny compared to the set of possible
Exact free energy protein sequencésAs a consequence, a real potential of

mean force need not even work for all possible sequences. In
A b the fitting calculations, we do not even attempt to fit to all
) possible protein sequences, but instead look for an approxi-

=
o
2 mation which works for “folding” sequences. In lattice
0] o . . . .
2 models it is particularly easy to identify the folding se-
&= quences. These are normally taken to be those with a single
:8_, P lowest energy conformatiSnsince degeneracy of ground
E P states would correspond to a protein which moved between
3 equally attractive conformations rather than a single stable
g A - structure.
< Exact free energy At the risk of overinterpreting some very simple models,
one can pursue the concept of folding sequences and ask
whether a free energy approximation based on folding se-
= A c) quences can be used to recognize the difference between
a;, folding and nonfolding sequences. This is an important issue
g e in protein and sometimes polymer design where one does not
e ol merely want a low energy sequence-structure pair, but rather
-] see®y o o one wants a sequence which folds to a single stable confor-
L Se o . . : . )
g * . Seg o 0s% mation. Viewed schematically, we would like to know if a
= LI o ° free energy approximation works as shown in Fida)l
° ... [ J oo L ] .... X X
s o ® L 0 where there is excellent agreement between predicted and
& > observed free energies. With a less predictive fit, one may
Exact free energy see the situation of Fig. (). The approximation, being
FIG. 1. Possible scenarios for the quality of free energy approximatiorPased on the folding sequences only, is not good at predict-
functions. ing free energies for nonfolding sequences with their degen-

erate ground states, but it is perfectly adequate at distinguish-

ing folding from nonfolding sequences. In the last case, one
meration, one can ascertain the extent to which this is anay see the situation of Fig.(d. Even though there is a
methodological problem and to what extent it is a fundameneorrelation between predicted and observed free energies,
tal limitation on the potential of mean force. Perhaps morehere is such overlap between predicted values for folding
interesting is the ability to examine different lattice modelsand nonfolding sequences that the function would not be
with different levels of sophistication. In the simplest caseyseful for protein design.
one could define the potential energy of a two-dimensional |, the following section, there are a series of calculations
lattice protein or polymer with a classical hydrophobic-polar jemonstrating issues which can be addressed. The calcula-
(HP) model® This has only three interaction parameters; begin with an HP-like modlof a two-dimensional

(€. €np, 2nd epp) Which might be set &.1(_1’ 0. 0. square lattice protein/heteropolymer where it is possible to
respectivel\’® The first step would be to see if some new set .. . )
visit every conformation and every possible sequence up to

of (efn, €fp, andepp) could be found so as to reproduce the : _
exact free energies. Next, one could try additional terms. Folrength 16. Since th.|s !’nodel suffers from frequent degeneracy
f ground state8,similar calculations were also performed

example, monomers could interact with empty sites on thé ) ) i - ]
lattice, reminiscent of lattice-solvent moddighis would ~ USINg @ potential energy matrix designed to alleviate degen-

introduce additional solvent interaction parametet§ @nd ~ €racy while preserving the property that similar monomers
%) to be fit simultaneously. There is no rigorous basis fortend to aggregatéBecause of the artificiality of the model,
the additional terms since they do not exist in the originalcomparisons were also done with a relaxed definition of de-
potential energy, but they are typical of the kinds of elabo-generacy. Finally, examples of artificial free energy approxi-
ration added to simple models. They may even be no morgations (solvent interaction and second-nearest neighbor
than pragmatic tools for the approximation of free energiesterms were tested.
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TABLE I. Interaction matrices and values efj interaction parameters. TABLE Il. Statistics of problem sizeN is the number of sequences
possible for two or three monomer type$,, s is the number of possible
2 monomer types conformations, andN¢,q the number of “folding” conformations. Values

are given for the interaction matrices as named in the text and with a defi-

HP HA nition of folding as the number of ground statééy(,,9 of one or two.
H P H P
Noig
H -1 0 H -2.3 -1
P 0 0 P -1 0 Ngrounu: 1 Ngrounu: 2
Length Nseq Nconf HP HA HP HA
6 64 36 7 22 11 52
8 256 272 7 35 45 147
10 1024 3034 6 104 114 480
Il. MODEL 12 4096 15037 87 782 417 2362
14 16 384 110188 386 2770 1598 8924

Chains consisted of a sfi;} of connected monomers of 16 65536 802075 1539 12252 7255 37980
type o at positioni. The potential energ\g, depended on the
corresponding set of coordinatgs} as well as sequence and
was given by

where the summation runs all ove[folding) sequences of a
1y o specific length. More generally, the approximate free energy
E{oibArid) IE<, 6"i"JA(r' 1)y @ F*({ri}% {€*}) could be redefined to include extra arbitrary

. . : _ terms as described below.
wheri tﬂ.e sufmm?tlondruns (zjvertall, ﬁﬁ'rs and?j_(ri j[ri) 'Sf th For the fits including a “solvation” term, a free energy
a switching function dependent on the coordinates o eapproximation was defined by

interacting particles. It is equal to O for most pairs or 1 if the
coordinates are adjacent in spa¢g{r;|=1), but not ad- F*(r10d e =S ¢ A LS e ®)
jacent in the sequencé ¢j|>1). €, , gave the strength of ({rif" e} {x })_KJ € AT 2 K S(Ti),
the interaction typeo adopted one of two types as given by
an interaction matrix from Table I. The two-monomer-type
matrices were the classic HP motlahd one labeled HA, .
loosely based on real protein statisficEhe labels are only a  the type of monomer. _ .
notational convenience and may not be the same as those of FOr the approximations using second nearest pairs, we
the original authors. define

For ea}ch sequencir;}, the potential energy of every F*({r,10 {e*} {p*})
conformation{r;},, was calculatedEqg. (1)] and the confor-

wheres(r;) is the number of empty lattice sites adjacent to
the positionr; and K’;i is an adjustable parameter indexed by

mational integral given by _ * L * L
;}_ eaiajA(rI ,r])+i2<j pgigju(rI i), (7)
_E _E({Ui}l{ri}m) . . .
Ziyy= 2 en —— | (2)  whereu(r;,r;) is usually 0, but set to 1 if the particles are

diagonal neighborgdistance|r; — rJ-| =/2) and separated by
where the summation runs over every conformatiomnd  more than one residue in the chain. Finally, one can add all
the temperatur@ was set to 0.1 unless otherwise stated. Thehe extra terms and consider an approximation based on both
exact free energ¥ was given by first- and second-nearest neighbor terms and solvation. One

F o= _len(Z{(ri})' 3) \évglséhgpaind up_with a(3+3+2)=§—parameter space in the

y two-monomer model:

In all cases, we work in reduced units with Boltzmann’s
constantk=1 and the potential energies were offset so thd:*({ri}o,{e*},{x*})=2 e o A(r ,rj)+_2_ P o U(ri )
lowest energy state for a sequence was zero. Note that the < <
free energy is labeled as a property of the sequénge

For the parameter fitting, an approximate free endéttyy + 2 K5 S(r). 8
was defined,
Ill. RESULTS
F*({ri}o,{f*}):;j e’(;iajA(ri,rj). (4

In all cases, parameters were fit considering all folding
Because this is an approximation, we write it explicitly as asequences. For checking if the fits generalized to nonfolding
function of the set of fit parameterss* } and coordinates of ~sequences, statistics were collected from a sampling of the
the ground state;}°. SinceF* ({r;}°, {e*1) is linear in the ~ order of 1§ sequences chosen randomly from thé 010’
interaction parameters, fitting was done with general leastPossibilities.

squares regressithto minimize an error given by A. Simple approximations

error= >, (Flo) —F*({r}° {e*1))?, (5) Tgble Il show_s the S|zes_and propertle_s of the systems
P i'p examined. Extensive calculations were carried out on the HP
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FIG. 2. Comparison of free and potential energies for the HP maddel, © : ! !
=16 at temperature§=0.1 (dot9 and T=0.5 (crosses E
3 (b)
S
g
and HA model for chains up to lengti=16. Initial condi- < 00010 F . . .

tions were determined by examining the HP model. Before
considering any approximations, the simplest system can be
used to show the effect of temperature and the role of en-
tropy. Figure 2 shows a comparison of free and ground state
potential energies for the HP mod&l=16 at two different
temperatures. Obviously, the free energy is correlated with
the potential energy, but the fit to a line becomes worse as
the temperature increases and the entropic contributiéh to " 0 T
increases. Th_e temperat_u'll'_e: 0.1 was used in a_II subse_- Exact free energy
guent calculations since it includes some entropic contribu-
tion and has been shown to be below the temperature dfiG. 3. Fit using simple approximation for HP data for 16-mers. Crosses
phase transition for this kind of system. The figure showsdenote folding sequences and dots nonfolding sequel(la)eEoIding_se—
another lmitation of this model. Asid ffom the viel-known, Jae1%¢2 o degenersonnalt al seauerces wore hap spats
high ground state degeneracy of the HP md&dgle plot  shown.
shows that this simple lattice system has very few energy
levels. This means that potential energies are restricted to a
relatively small number of discrete values, but that free enfit for three parameters well defined. While one could argue
ergies will span something closer to a continuum. Any at-that the fits are better than random, the correlation coeffi-
tempt to approximate or predict free energies can also beients are always less than 0.5 and the approximation is not
seen as an attempt to account for this entropic spread of fragsefully predictive. The qualityor lack thereof of the fit is
energies. easily seen in Fig. 3. The top plot shows the inability of the
One can now apply the fitting procedure to the originalsimple approximation to fit even the folding sequences alone.
functional form and show how the simple functional form For completeness, the bottom plot shows all the sequences.
with the original number of parameters can be adjusted t&learly this simple fit is so bad that even given the ground
reproduce free energigbring the points closer to a straight State of a sequence, one cannot predict whether or not it will
line). As an example, Table Ill shows the fit quality and be a folding sequence.
resulting e* parameters for lengthN=12—16. The smaller This result may be a property of the simple model used,
chains (N<12) do not have enough energy levels to make abut another trend is clear from the results. The fit parameters,
€ €hp, andeppare clearly dependent on system size. This
is a severe problem with this kind of free energy approxima-

TABLE Ill. Fits of approximated free energies for the HP model for lengths tion and has been seen in other cont&is is discussed
12-16 without additional terms,,, €fp, and e are the approximating

parameters given in E¢4). The parameter has the meaning of correlation below.
coefficient.

N N N B. Additional terms
EH—Hs EH—PS eFips 2 2 . . .

N Model (107°) (107°) (107°)  x roox r Perhaps one cannot predict free energies using only Eq.
Folding Nonfolding (4) (simple HP model This does not mean that some other,

12 WP 178 595 319 B10° 034 00l —021 more elaborate, function will not work. This can be tested by

14 WP 085 2341 1073 10°° 045 002 008 ad_d!ng terms .WhICh are notlln thg functional form of the

16 HP 194 1485 946 x10° 035 005 o004 Original potential energy. We investigated cases which could

be seen as a solvation tefi®g. (6)], a second-nearest neigh-
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TABLE IV. Parameter values for fits for chains of lendgth=12—16 for the HP model. Solv and 2nd nbor
indicate if “solvent” and second nearest neighbor terms were usidre the fit nearest neighbor interaction
parameters as given by E@). «}; and xj are the “solvation” parameters for hydrophobic and polar groups
corresponding to E¢(6) and thep}, correspond to the second-nearest neighbor interaction parameters of Eq.
(7). reqig @ndr, refer to the correlation coefficient for the folding sequences and all sequences, respectively.

2nd
N Solv nbor € €fp €rp K Kp P pip prp Tiold Fall
12 1.78 5.95 3.19 0.34 -0.21
14 0.85 2311 10.73 0.45 0.08
16 1.94 14.85 9.46 0.35 0.04
12 X -6.41 4.56 2.42 5.34 1.43 0.68 0.60
14 X —-17.67 13.96 3.71 13.94 4.06 0.63 0.86
16 X —-11.20 16.95 9.32 12.88 1.98 0.67 0.78
12 X —-6.87 4.64 1.36 5.88 1.19 3.32 041 0.76
14 X —-43.07 —-2.4 —-2.65 25.38 12.86 7.17 0.23 0.76
16 X —26.87 5.47 7.62 17.08 6.84 3.91 0.37 0.75
12 X X -5.29 5.77 0.47 3.48 —1.44 2.13 2.43 553 0.72 0.10
14 X X —36.54 2.56 0.23 7.93 3.99 14.97 6.27 1.16 0.66 0.81
16 X X —14.52 15.81 10.61 12.24 3.57 1.95-7.47 —-2.17 0.68 0.83

bor term[Eq. (7)], and both artificial term§Eq. (8)]. Labels  HP model. The simple fit is appalling. Second-nearest neigh-
such as “solvation” imply a physical basis, but one could bor terms give a marked improvement and a solvation term
regard the terms simply as numerical tools. Table IV giveds more effective. The best fit is given by the formulation
the quality of the fit, as well as the final parameters for vari-with the most termgsecond-nearest neighbesolvation,

ous system sizes. Since the largest number of unknown p#&ut the improvement is too small to justify the additional
rameters is eight, there is never a problem with underdeter-
mined parameter sets.

Adding a second-nearest neighbor term increases the
quality of the fit for folding sequences, but has the most
dramatic effect for nonfolding sequences. Figure 4 shows the
fit quality for the 16-mer. One may consider a correlation x (@
coefficient of 0.75for the nonfolding sequence® be suc- 0003k X ux X« |

. . . . . X
cessful and informative, but there is another way to view the " x
data. A substantial number of points have a true free energy x X
around 0.5 units, but are predicted as having very low free x XFO% x
energies. Such an approximation would lead to incorrectly
classifying sequences as folding. Figure 5 shows a better fit
achieved with solvation terms.

Simultaneously fitting to solvation and second-nearest
neighbor terms adds no significant improvement in the cor-
relation coefficient. For example, in the 16-mars 0.67
with solvent alone and moves te=0.68 with both kinds of
terms. The quality of the data does not justify the extra pa-
rameters. Furthermore, there is no sign of a useful threshold |
for distinguishing folding from nonfolding sequences.

—-0.002 T T

-0.004

0.0000 0.0005 0.0010 0.0015

ted free energies

Xima

Appro

C. Additional models

The fits described so far have been based on a model ~0.002
which produces very few folding sequencésom 87 to
1539 and has few possible potential energy levels. Further-
more, the definition of folding is extremely narrow. Perhaps
the poor fits are merely a reflection of the model’s limita-
tions. One way to test this is to relax the restrictions and see
if the trends change in any way. —0.008 - R — r 15

The first approach is to use a more complex interaction Exact free energies
matrix. The HA model still has only two monomer types, but - _ _
suffers less from degenerate ground statas shown in FIG. 4. Fit including secon_d-nearest neighbor terms for thg HP model, 16-

. i . ) mers. Crosses denote folding sequences and dots nonfolding sequences.
Table Il. The quality of fits is summarized in Table V and the Folding sequences only ar{d) all sequences. More than @oints were
results for the HA model are generally the same as for thesed in the fitting, but for clarity, a sampling of 5622 points is shown.

—-0.004

Downloaded 11 Mar 2001 to 150.203.245.2. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



J. Chem. Phys., Vol. 114, No. 11, 15 March 2001 Free energy approximations in simple lattice proteins 5003

0.0008 T T has a unique ground state, but in a two-dimensional lattice
model, this may be an unreasonable restriction. The fits on

0.0006 | x X x(a) 16-mers were repeated, but using a relaxed definition of fold-
ox X . X ing where a sequence is allowed to have two conformations
><x>§°< X  x of lowest energy. These are labeled with “folding &’ in

00004 | yxX7x T x X i Table V. In general, the results are the same as for the re-

xx?& x XX stricted definition of foldingfolding def=1). Simple fits us-

0.0002 | xx>z<>’<< . ing three adjustable interaction parameters are not useful and

R fits using second-nearest neighbor terms are better. The best
0.0000 ;‘;‘ x ] fits are seen with solvation terms where the correlation coef-
| x ficient is often around =0.8 which may almost be useful.
~0:0002 0.0005 0.001 0.0015 IV. DISCUSSION
0.003 Before interpreting these results it is worth seeing their

place in the context of free energy approximations in differ-
. ent systems and models. At one extreme, one has atomistic
proteins or polymers where accurate free energies are not
easy to obtain experimentally or from simulation. At the next
level of approximation, one may accept data which comes
from different systemgarchived structurgsand it may be
useful to assume a Boltzmann-distribution of observations.
One may note the problems in methodolbgy use iterative
methods to remedy thef.Continuing to simpler models, it
is possible to construct examples where the sampling meth-
odology does not produce very accurate free energy
—0.001 . . estimates. Going to the simplest and smallest systems, it is
0 0.5 1 1.5 possible to see what the limits of pairwise approximations to
Exact free energies free energy ultimately are. Unfortunately, there is no con-
FIG. 5. Fit including solvation neighbor terms for the HP model, 16—mers.tmuum Of.WOI‘k going from two-.dlm_ensmnal toy models to
Crosses denote folding sequences and dots nonfolding sequésdesid- real proteins, so some speculation is warranted.
ing sequences only arth) all sequences. It is also important to compare results showing the limi-
tations of other approaches. Several workers have asked

) . ~ whether functions can be constructed so as to favor native
adjustable parameters. The HA model results in a more ingonformations over all othef€.Others have shown that for
tricate energy surface, but free energies cannot be reliably f§ome formulations this way is exceedingly diffictitHere,
and predicted. o we are not interested in recognizing the single native confor-

The definition of folding is another weakness of the ap-mation, nor entering into the argument as to whether this is
proach. It has been said that a protein sequence will fold if ithe |owest free energy state. Instead, we ask whether the free

energy can be approximated for a collection of states over a

TABLE V. Fit quality with model variations. The model refers to either HP range of related systems. . .
or the 2 monomer HA interaction matrix given in Table I. Solv and 2nd nbor One should also note small differences when makmg
refer to the inclusion of solvation or second-nearest neighbor tegysand comparisons to other work. The Hamiltonians used here
ra are the correlation coefficients with the same meaning as in Table IVcome from rather arbitrary models for potential energy and
“Folding def” states, for given sequence, the number of conformationsgifferent results would be obtained with more sophisticated
allowed to have ground state energies in order to classify the given sequence . .
as a folding sequence. examples. The simplest model used here is referred to as the
HP model because of its similarity to classic wt there

0.002

Approximated free energies

Folding 2nd is a significant difference. In the original description of the

Model def Solv nbor " fold Fai HP model, the interaction matri@able 1) was regarded as
HA 1 0.09 0.30 the free energy of the system. Here, we use the interaction
HA 1 X 0.10 0.35 matrix for the potential energy and calculate the resulting
HA 1 X 0.43 0.80 free energy exactly. This is valid since any plausible poten-
m ; X X %“(‘)2 %‘72% tial energy model will do. All that matters is that, given some
HA 2 X 011 034 potential energy, the free energy can be rigorously calcu-
HA 2 X 0.43 0.81 lated.

HA 2 X X 0.46 0.80 Given all of these caveats, one may find trends in the
HP 2 0.04 —0.49 results. The first three rows of Table IV show that the simple
:l'z ; X X 8:;2 8:;‘51 contact interaction matrix cannot be adjusted to reproduce
HP 2 X X 0.29 0.78 both potential energies and entropic contributions simulta-

neously at the specified temperature. The next three lines of
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Table IV (with a solvation term are intuitively expected. knows that changing the representation would change the
The HH interaction term ) is always the most negative results. For example, it is known that about 2% of sequences
and of the two solvent interaction parameters, the polar oneyn a square lattice have nondegenerate ground states, but the
kp, is always the more favorable. The results with thefraction is much higher on triangular latticEs Similarly,
second-nearest neighbor terms are less expected. Table Dging a larger number of monomer types would also give
shows thee},, parameter to be most favorable, but fifg,is ~ more folding sequenc&® (and a better dispersion of po-
not favorable. Trying to interpret this physically would sug- tential energy leve)s Unfortunately, given the exponential
gest that HH interactions were favorable at a distance of growth of calculation size, no systematic calculations could
unit, but unfavorable at a distance ¢2. This is, of course, be performed with more than two monomer types.
a complete artifact. HH interactions at a distance|@f are Quantitative results may not be transferable between
not considered in the original potential energy. The distribu-Systems, but it may be useful to see which trends continue
tion of the interaction types at this distance is somewhatvith more realistic systems. Some results should be clear
correlated with the exact free energy and this is reflected ifvith more computational time. If one wants to pursue simple
the fit p,, parameter. In one sense, these results are typic&roteins, it would be possible to see how long chains must be
of fitting in real applications. A term may have a title such asPefore parameters become less size dependent. Some results
second nearest neighbor interaction, but numerically, it i@re less easy to anticipate. It has been shown that properties
another degree of freedom in the fitting and in moving tosuch as designability and foldability are strongly dependent
accommodate the data, it may not behave as its name sugP the interaction matrix and most importantly, the number
gests. of monomer types® Unfortunately, when doing exhaustive
Although the systems here are small and simple, it jcalculations on these systems, the computational effort is
worth trying to compare to larger or more elaborate systemdactorial in the chain size and exponential in the number of

From the first few lines of Table IV, it is clear that te& .~ Monomer types. One may have to use a sampling approach
7] H
parameters are not transferable between different system ;laCklff these systeth at the cost of losing the elegance of
sizes. This problem is seen with the more commoneXnaustive enumeration. o -
Overall, the results suggest that it will always be difficult

Boltzmann/knowledge-based methodology on simple

systems. This reflects the parameters adjusting to accommo®© reproduce free energies, when limited to two-body terms

date the different ratios of exposed to buried sites. A moréind th? p;pblemh_wr:)uld Eede\;en harﬁl]er i on? wante(: an
interesting question is whether the terms labeled “solvation»@PProximation which worked at more than one temperature.

remove the size dependence. If they truly accounted for sol(-)n the other hand, the observed fit of free energies is quite

vation and were additive with the pairwise terms, the sizeSncouraging. With increasing system sigaore protein/

dependence would vanish. The numerical contribution fronpholymer l!ke’ tfhethﬁllty of fit improves. TZIS Ieavehs open -
the solvation would scale appropriately with the surface tg€ question of whether one can get a good enough approxi-

buried ratio as the system size was changed. From Table I\ynation o at least recognize folding sequences in larger pro-

this is certainly not happening. The reason is that the intyi{iNs or polymers. If one has a limited application area and is

tive separation of contributions is not appropriate. Althoughsat'S]cled with an approximation for some small range of sys-
a term might be labeled “solvation,” the parameters are ad{ems, then the use of apparently artificial terms may be prac-
justed to reflect the contributions from all the structures and'cal'
reflect distributions of all the structures which contribute to
the partition function. By simple arguments, one can see thaACKNOWLEDGMENTS
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