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A simulation algorithm is introduced, which uses a swarm of molecules to explore conformational space.
The method uses multiple, different starting conformations and propagates them in time by integration of
Newton’s equation of motion. In contrast to conventional molecular dynamics simulation of a set of
independent molecules, in this method each molecule of the swarm is in addition subject to an artificial field
that keeps the trajectory of individual molecules tied to the average trajectory of the swarm. In this manner,
a search for the global energy minima of many molecules is transformed into a cooperative search. It is
shown that such a cooperative search is less attracted by local minima in the potential energy surface and that
the total system is more likely to follow an overall potential energy gradient toward the global energy minima.

Introduction

The yearly increase of computer power brings the idea of
simulating protein folding on a computer closer and closer to
reality. If one day a sufficiently powerful supercomputer would
be built that could simulate the time evolution of a protein over
a period of a few seconds, the protein folding problem would
be nearly solved. This would certainly be true if simulation
would exactly reproduce reality, since it is a well-known fact
that proteins are able to fold into a unique structure on a
subsecond to minute time scale.

To explain the amazingly high success rate of proteins folding
into their native conformation, funnel-like potential energy
surfaces have been postulated.1-3 Following this hypothesis,
one should be able to simply follow the funnel by simulation
of a protein using molecular dynamics techniques, i.e., by
solving Newton’s equation of motion. In practice, this idea
breaks down for several reasons. First, the potential energy
function is usually very complex with many barriers, and all
but the smallest are surmounted very infrequently. Second, the
energy hypersurface is of high dimensionality. This not only
means that the conformational space to be searched is vast but
also that many, kinetically equally likely, branching pathways
may exist which lead to local minima on the energy surface.
Keeping in mind that molecular dynamics simulation is a
heuristic method to explore conformational space, kinetically
even less likely pathways may be followed during a simulation.

One way toward the goal of making successful protein folding
simulation more realistic is to develop new simulation methods
in which the trajectory of a molecule is less affected by
inaccuracies and details of the energy function and which thus
make the trajectory of the molecule more likely to be a pathway
of folding. Several methods have been proposed that rely on
smoothing of the molecular potential energy surface. The
probably most popular approach is simulated annealing (SA)4

which takes advantage of smoothing an energy surface by
entropic contributions. One might attempt to smooth a surface
by filling in the energy hypervalleys.5-7 Several other methods

temporarily add artificial degrees of freedom8-10 which can be
seen as smoothing the energy surface with respect to the initial,
physically real degrees of freedom. Some approaches are based
on the smoothing of a mean field potential energy surface11-18

or on a fuzzy description of the system19-22 and, thus, a
smoother energy surface. The strategy is more obvious in
methods that apply smoothing procedures directly such as the
deflation method23 and the diffusion equation method (DEM).24-29

In the last method, the diffusion equation is solved analytically
for potential energy surfaces, and the original potential energy
surface is restored by a time reversal process.

Our method here uses a slightly different approach to make
a simulation less dependent on the detailed structure of an energy
surface. The basic idea comes from model simulations of social
insects.30-32 These simulations were motivated by the astonish-
ing insight that intelligent and efficient behavior of a whole
swarm of insects can be achieved even in the absence of any
particular intelligence or forethought of the individuals. Our
method, in the following called SWARM-MD, transfers this
kind of simulation to molecular modeling, and we investigated
the effect of cooperative behavior of a swarm of molecules for
conformational search.

A closely related, but different, method is the use of any
additional term in the potential energy function that energetically
penalizes the pairwise conformational differences between all
pairs of a set of identical homologeous polymers.33,34 It was
inspired by the idea to use the similarity in structure of
heteropolymers for guiding the search for the global minimum
in Monte Carlo lattice simulations.

Theory

The concept of the method is based on the idea to combine
a swarm of molecules with molecular trajectories into a
cooperative system that searches conformational space. To build
such a cooperative system, each molecule is, in addition to
physical forces, subject to (artificial) forces that drive the
trajectory of each molecule toward an average of the trajectories
of the swarm of molecules.

Swarm Interaction Function. The interaction between
molecules within the swarm is modeled by a function that
exponentially decays with increasing distance measure. A
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widely used distance measure between two structures is the so-
called root-mean-square positional distance (RMSD). This
metric, however, requires to optimally superimpose molecules
to remove translational and rotational shift, and it is, in this
context, therefore less convenient to work with. The distance
measure used in this work is the root-mean-square dihedral angle
difference (DHAD) of N (selected) dihedral anglesφi

j in
moleculej and their corresponding swarm averages〈φi〉 over
M molecules:

Thus, the additional potential energy function that forces the
swarm of molecules toward behaving as an organized system
is defined by

where the parametersA andB are used to define intercept and
slope of this function.

As can easily be seen from this equation, the additional
potential energy termVswarm is dependent on the relative
positions of molecules with respect to the swarm average, and
the energy of a member of the swarm is not conserved.

The corresponding additional force acting on an atomk in
moleculej is given by the opposite of the first derivative of the
functionVswarm,

Methods

As a test, three distinct model molecules were used which
only differ in the location of their global energy minima on the
potential energy surface. The models are alkane-like chains
with 50 methylene groups in a united atom representation.
Nonbonded interactions were set to zero in these models. The
location of the global energy minimum is therefore determined
by a dihedral angle energy potential function of the form

For each dihedral angle in the chain the same potential energy
function was used. The parameters and the dihedral angle value
of lowest energy are given in Table 1 Figure 1 shows the
potential energy profiles.

All molecular dynamics simulations were conducted in vacuo
using the GROMOS87 37D4 vacuum force field parameters35

and a leapfrog integration scheme with a time step of 2 fs. The
SHAKE algorithm36 was applied to constrain bond length with
a relative accuracy of 10-4. In the model systems bond angles
were dynamically restrained using the GROMOS bond angle
potential energy function and parameters for hydrocarbons.
Berendsen’s weak coupling method37 was individually applied
to each molecule to control the temperature. Expecting a high
flux of energy during the folding process and in order to keep
the temperature close to that of the simulated annealing protocol,
when applied, a small temperature coupling time constantτT )
0.05 ps was used. In the protein simulations, nonbonded
interactions were evaluated with truncation of forces beyond a
cutoff radius of 1 nm, while updating an interaction pair list
every five simulation steps.

In simulations of model molecules, simulated annealing was
performed by exponentially lowering the temperature from 400
to 100 K within the simulation time of 100 ps. In SWARM -
MD simulation the parametersA andB in eq 2 were chosen to
beA ) -200 kJ mol-1 andB ) 0.8 rad-1, and the set of allN
) 47 dihedral anglesφ along the linear chain were used to
calculate the additional potential energy contribution defined
by eq 2.

The protein analyzed was the structured domain of chymot-
rypsin inhibitor 2 (CI-2, PDB acquisition code 3ci2), a 64-
residue protein without disulfide bridges. Starting from a
minimized structure of refined CI-2,38,39 50 conventional MD
simulations of 1 ns at 500 K and 500 ps at 600 and 1000 K
were performed to sample conformational pathways of unfolding
of the protein. The runs were identical in setup, only differing
in the initial random velocity assignment corresponding to the
given temperature. RMSD values were calculated forCR atoms
only, and the calculation of DHAD was performed using
backboneφ andψ dihedral angles.
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Figure 1. Dihedral angle energy functions (4) used in three simple
molecular models. The parameters are listed in Table 1.

TABLE 1: Parameters of the Two Dihedral Angle Potential
Energy Function Terms and the Dihedral Angle Value of
Lowest Energy for Three Molecular Models

model f1 model f2 model f3

kφ
1 [kJ mol-1] 5.85760 5.85760 5.85760

nφ
1 3 3 3

δ1 [deg] 180.0 180.0 180.0
kφ

2 [kJ mol-1] 5.85760 4.68608 4.68608
nφ

2 1 1 1
δ2 [deg] 90.0 180.0 0.0
φ0 [deg] -62.91 0.0 180.0
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Results and Discussion

1. Model Systems.To test new search methods in molecular
modeling with respect to their performance, it is essential to
choose a molecular(- like) system for which knowledge about
the shape of its potential energy surface is available. In many
cases molecular systems are used to which several search and
simulation methods were already applied, and thus, knowledge
of their potential energy surface has been obtained. This
approach, however, sets a limit to the size of a test system,
since only the energy surface of relatively small molecules can
be explored sufficiently by simulation. An alternative approach,

which does not have an intrinsic limit with respect to size or
complexity of the system, is to construct a model system for
which the potential energy function is a sum of terms that are
independent of each other. Test systems of this kind are used
here. Nonbonded interactions are not considered, and the
dihedral angle energy contributions to the total potential energy
of the individual dihedral angles are independent of each other.
Three different models of this type are used, and two features
are common to all: (1) an overall energy gradient toward the
global minimum (funnel) and (2) a high number of local minima
(347 - 1) separated by energy barriers of similar height. The
three models only differ in the positions of the global energy

Figure 2. Comparison of the geometric spread of structures produced by the two optimization methods: Markers show the root-mean-square
dihedral angle difference (DHAD) of all angles in the final structure compared to the lowest energy conformation. Left: 50 simulated annealing
MD simulations of one molecule. Right: one simulated annealing SWARM-MD simulation with 50 molecules. (a) Model f1, (b) model f2, (c)
model f3.
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Figure 3. Comparison of 50 independent simulated annealing MD simulations of one molecule with one simulated annealing SWARM-MD simulation
of 50 molecules. Lines with error bars indicate averages of individual root-mean-square dihedral angle differences (DHAD) to the lowest energy
structure and standard deviation as a function of simulation time. Single lines indicate DHAD of the swarm dihedral angle averaged structure to the
lowest energy structure. (a) Model f1, (b) model f2, (c) model f3.
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minimum on the energy surfaces which were chosen to be
distinctly different from each other.

There certainly are optimization methods that perform
particularly well for these model systems. However, although
these models are not suitable to judge the performance of all
types of optimization methods, in our opinion, they are well
suited for testing optimization methods based on molecular
dynamics, such as analyzed here.

2. Results on Model Systems.Since in our model system
the position of the global minimum is exactly known, one can
analyze optimized structures relative to the structure of lowest
energy. In Figure 2 the root-mean-square dihedral angle
difference (DHAD) versus the dihedral angle potential energy

is plotted for final structures of 50 simulated annealing MD
simulations of one molecule and one simulated annealing
SWARM-MD simulation using 50 molecules. Since simulated
annealing is a heuristic method, calculations were repeated many
times using starting structures with randomized dihedral angles
and different initial velocity assignments. The same starting
structures and initial conditions were used in the SWARM-MD
simulation. Final structures from the SWARM-MD simulation
show a smaller spread in energy and DHAD value and are closer
to the global energy minimum. The smaller spread is partly
due to the additional (SWARM) potential energy contribution,
which reduces the spread.

Convergence to structures closer to the global energy

Figure 4. Comparison of the geometric evolution of structures in the course of 50 independent parallel unfolding simulations of CI-2 from the
native starting structure. The continuous line with error bars indicates the average root-mean-square positional difference (RMSD) of CR atoms and
standard deviation. The dashed line shows the RMSD of the swarm positional coordinates averaged structure from all 50 independent parallel
unfolding simulations. (a) At 500 K simulation temperature, (b) at 1000 K simulation temperature
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minimum illustrates that with cooperative search a molecule is
less likely to get trapped in a local minimum, respectively, and
is more easily able to surmount energy barriers with the help
of forces driving it toward the dihedral angle averaged structure.

In Figure 3 the DHAD trajectory of the dihedral angle
averaged structure and a statistical description from 50 individual
structures are shown for both methods. All simulations start
close from a DHAD value of random dihedral angle deviation
(DHADrandom ) 1.81 rad) and rapidly converge in the course
of simulation. In all calculations the average structure ap-
proaches the structure of lowest energy faster than individuals
do. This need not necessarily be the case but is based on the
fact that individual dynamic systems distribute themself around
the attracting global minimum. Thus, it is expedient to
encourage individual structures to follow the average.

3. Analysis of Protein Unfolding Simulations. The success
of the SWARM-MD method relies on the fact that the average
structure of a swarm of molecules converges faster to the
structure with lowest energy than individual molecules do.
Whether this is true for more realistic models of molecules has
not been shown so far. To test this hypothesis, we performed
a great number of high-temperature unfolding simulations of
the protein CI-2 and monitored the divergence of structures. A
rather basic model was used. Solvent is neglected in the
calculations, and it is not likely that the native conformation
corresponds to the global energy minimum of the potential
energy surface of this model. Furthermore, the process of high-
temperature unfolding of a protein is not necessarily comparable
to that of folding a protein. The aim of these simulations is
not to give a detailed description of how this protein unfolds,
but only to monitor the extent and possible direction of
divergence of conformations from a well distinct energy
minimum on the potential energy surface. In Figure 4 the time
evolution of the RMSD value with respect to the starting
structure is shown for 50 simulations starting with different
initial velocities and at different temperatures. In addition, the
RMSD between the starting structure and the average positional
coordinates of structures from 50 parallel simulations is indicated
by a dashed line. Similar to the observation with the simple
model molecules, in all cases the distance from the native protein
conformation to the average conformation is significantly
smaller than the distance between any individual structure of
the simulations and the starting structure. This holds, even when
in the progress of a high-temperature simulation structures
become quite dissimilar to each other and to the starting
conformation. A similar trend is observed when the deviation
measure in terms of internal coordinates (DHAD) is analyzed
instead of the deviation in terms of positional coordinates
(RMSD) (data not shown).

Therefore, in a refolding simulation using a more appropriate
model to describe the system, one would expect that the
convergence to the native (and global minimum) conformation
is sped up when the system experiences an additional force
driving the molecules toward their average structure.

Conclusion

It is shown that in a dynamics simulation average coordinates
of a swarm of structures usually converge faster to the
conformation with lowest energy than any individual within the
collection of structures. On the basis of this observation, we
proposed a method that biases the trajectory of motion of
molecules in a swarm toward the swarm’s average structure by
the use of artificial forces. In this way searching properties of
the whole system are enhanced. It is shown that the use of

such a cooperatively acting system of many molecules is more
likely to converge to the global minimum of the energy surface
than a single molecule. One must, however, note that the
dynamics of the system is, of course, artificial. The method
changes the energy of molecules each time the swarm-averaged
structure changes. Clearly this kind of searching can only be
used when some kind of temperature regulation for the
individual molecules is applied.

A clear disadvantage of the method is that the simultaneous
use of numerous explicit molecules is computationally expen-
sive. The concept of the method, however, is highly suited for
parallel computer architectures for which a nearly optimal
balance of processor load can be achieved. Furthermore, the
amount of information exchanged between molecules or pro-
cesses at each step is small, which makes a near linear scaling
of performance with the number of processors is attainable.
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