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ABSTRACT: Genetic encoding of a noncanonical amino acid
(ncAA) in an in vivo expression system requires an aminoacyl-
tRNA synthetase that specifically recognizes the ncAA, while the
ncAA must not be recognized by the canonical protein expression
machinery. We succeeded in genetically encoding 7-aza-tryptophan
(7AW), which is isoelectronic with tryptophan. The system is fully
orthogonal to protein expression in Escherichia coli, enabling high-
yielding site-selective isotope labeling in vivo. 7AW is readily
synthesized from serine and 7-aza-indole using a tryptophan
synthetase β-subunit (TrpB) mutant, affording easy access to
isotope-labeled 7AW. Using labeled 7AW produced from 15N/13C-
labeled serine, we produced 7AW mutants of the 25 kDa Zika virus
NS2B-NS3 protease. 15N-HSQC spectra display single cross-peaks at chemical shifts near those observed for the wild-type protein
labeled with 15N/13C-tryptophan, confirming the structural integrity of the protein and yielding straightforward NMR resonance
assignments for site-specific probing.
KEYWORDS: 7-azatryptophan, genetic encoding, isoelectronic substitution, NMR spectroscopy, selective isotope labeling

Selectively isotope-labeled proteins present unique tools for
site-specifically interrogating their structure and changes in

response to ligand binding. With the advent of algorithms that
successfully predict three-dimensional (3D) protein structures
from the amino acid sequence with high confidence,1,2

installing sensitive probes at strategically chosen sites has
become important for efficient experimental analysis. Isotope
labeling by amino acid type presents excellent probes for
analysis by nuclear magnetic resonance (NMR) spectroscopy
and minimizes any structural perturbation, but it remains
difficult to distinguish the signals in a sequence-specific
manner. The commonly used approach of resonance assign-
ment by uniformly isotope-labeled samples and multidimen-
sional spectra poses stringent requirements on sample quality,
protein concentration, and molecular weight to achieve the
necessary resolution and sensitivity. In contrast, 2D correlation
spectra of selectively labeled samples can be obtained much
more easily, but the assignment of 2D cross-peaks generally is
by site-directed mutagenesis of individual amino acid residues
and is easily compromised if mutation of buried residues
changes the chemical shifts of the remaining labeled residues.
In an ideal scenario, unambiguous assignments are afforded

by a sample where a single amino acid is labeled with stable
isotopes. This has been achieved by in vitro protein synthesis
using separately loaded suppressor tRNA, but the process is
laborious and limited by the amount of loaded tRNA.3−9 Much

larger protein quantities with single-residue labeling can be
made in vivo using photocaged amino acids.10,11 If installed at a
site that is buried in the core of the target protein, however, a
photocaging group can severely perturb the protein fold, and
for many amino acids (such as tryptophan), genetic encoding
with a photocaging group would be difficult. The present work
shows that site-specific isotope labeling of tryptophan sites can
readily be achieved in vivo by using 7-azatryptophan, which is
an isoelectronic analogue, readily labeled with isotopes, and
suitable for genetic encoding despite its close chemical
similarity with tryptophan. The pKa value of 7-azaindole is
4.59 at 20 °C,12 indicating that the nitrogen in the six-
membered ring is not protonated at neutral pH.
Genetic encoding in vivo requires mutant aminoacyl-tRNA

synthetases (RS) capable of loading suppressor tRNA with a
noncanonical amino acid (ncAA). In order to achieve
orthogonality with the host system of protein synthesis, the
RS enzyme must not recognize any of the canonical amino
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acids, which is possible only if the chemical structure of the
ncAA differs from the 20 canonical amino acids. A large variety
of ncAA has been genetically encoded in this way.13−16 RS
enzymes display remarkable selectivity. For example, we
recently showed that engineered RS enzymes can sense the
subtle difference between 7-fluorotryptophan and trypto-
phan.17 In the following, we show that 7-azatryptophan
(7AW; Figure 1a) can also be genetically encoded, leading

to proteins with a single CH-group substituted for a nitrogen
atom. This minimal change in chemical structure also
minimizes any structural perturbation of the protein when
tryptophan is mutated to 7AW. We demonstrate the structural
conservation by the conservation of the backbone amide
chemical shifts in 15N-HSQC spectra of the Zika virus NS2B-
NS3 protease (ZiPro), where each of the six tryptophan
residues, five of which are buried, was one by one substituted
by 7AW labeled with 15N and 13C in the amino acid backbone.
Isotope-labeled 7AW was produced as shown in Scheme 1

from commercially available 15N/13C-labeled serine (Martek)

and unlabeled 7-azaindole (Ambeed), using the Tm9D8*
mutant of the tryptophan synthase β-subunit (TrpB) from
Thermotoga maritima, which had been engineered for the
conversion of indoles with larger substituents in the 7
position.18 We expressed the enzyme with an N-terminal
His6 tag in Escherichia coli BL21(DE3) with the gene cloned
into the multiple cloning site of pET-21(+) (Twist

Bioscience). Using 20 μM purified Tm9D8* TrpB as the
catalyst, 7AW was produced in vitro at 55 °C in 72 h from 61
mM 15N/13C-labeled serine and 55 mM 7-azaindole. The
conversion of 7-azaindole to 7AW was quantitative based on
1H NMR analysis (Figure S1).
The selection of the requisite RS enzyme succeeded in five

rounds of positive and negative selection from a previously
published library of RS enzymes derived from the pyrrolysyl-
tRNA synthetase of the methanogenic archaeon ISO4-G1
(G1PylRS).19 The selection used fluorescence-activated cell
sorting (FACS) of E. coli DH10B cells cotransformed with the
G1PylRS mutants on the library plasmid pBK-G1RS and the
selection plasmid pBAD-H6RFP, which encodes mCherry red
fluorescent protein (RFP) preceded by a His6-tag and an
amber stop codon. The library varied the residues 124, 125,
221, and 237 in full and the positions 165, 167, and 204 in part
as described previously.19,20 Significant enrichment of active
G1PylRS enzymes was obtained after the fifth round of
selection (Figures 1b, S2, and S3). Candidates yielding the
highest level of fluorescence in the presence of 7AW were
individually characterized and sequenced (Table S1). The
G1PylRS selected contained the mutations L124M, Y125M,
N165A, V167G, A221G, and W237H. The gene was
subcloned into the high-copy number plasmid pRSF together
with the gene of the suppressor tRNA. To confirm the
selectivity of the selected G1PylRS mutant for 7AW, a sample
of the NT* solubility tag derived from the N-terminal domain
of spider silk protein21,22 was produced at its C-terminal end,
which contained a TEV cleavage site followed by aspartic acid
and 7AW, so that cleavage with TEV protease yielded a
tripeptide with the sequence GD(7AW). Following cleavage,
the tripeptide was separated from NT* and TEV protease by
Ni-NTA resin purification. The 1D 1H NMR spectrum of the
tripeptide was characteristic of 7AW and showed no evidence
of natural tryptophan (Figure S4).
7AW mutants of ZiPro were produced in vivo in E. coli

B95.ΔA cells,23 using LB medium with the isotope-labeled
7AW amino acid provided in 1 mM concentration. The
construct contained a Gly4−Ser−Gly4 linker connecting the C-
terminus of NS2B with the N-terminus of NS3 and a C-
terminal His6-tag for purification using a His GraviTrap
column (Cytiva)20 and the gene was on a pCDF vector with
spectinomycin resistance as described previously.24 100 mL
cultures produced in parallel yielded between 35 and 170 μM
samples of purified ZiPro in 0.5 mL NMR buffer (20 mM
MES, pH 6.5, 150 mM NaCl). Mass spectrometry was
consistent with the incorporation of single 7AW residues
(Figure S5).
Figure 2 shows the 15N-HSQC spectra recorded of the six

ZiPro samples harboring isotope-labeled 7AW at the six
individual sites containing tryptophan in the wild-type
protease. As expected, each spectrum shows a single cross-
peak. Plotting at the noise level shows no evidence of
misincorporation in response to tryptophan codons (Figure
S6). The chemical shifts of the 7AW cross-peaks are close to
the chemical shifts of the wild-type protein produced with
15N/13C-labeled tryptophan, demonstrating minimal structural
perturbation by the introduction of single 7AW residues. The
largest difference in chemical shift is observed for position 5,
for which the tall cross-peak and the absence of electron
density in the crystal structure25 indicate high flexibility and
disorder. The ZiPro construct has a molecular weight of 25
kDa, and 3D NMR experiments of this protein are possible,

Figure 1. RS enzymes specific for 7-azatryptophan. (a) Chemical
structure of 7-azatryptophan (7AW). (b) Histogram of the fifth FACS
selection round to identify G1PylRS enzymes active for 7AW. The
horizontal axis shows the level of red fluorescence observed by
expression of the mCherry red fluorescent protein (RFP) gene,
preceded by an amber stop. The vertical axis corresponds to the cell
count. The difference in the RFP fluorescence intensity of cells grown
with (orange) and without 7AW (negative of cell count; cyan) serves
as an indicator of the presence of 7AW-specific RS enzymes in the
gene pool.

Scheme 1. Enzymatic Synthesis of Isotope-Labeled 7AW (3)
from 7-Azaindole (1) and Serine (2) that was 13C-Labeled
in Positions 1 and 2
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but resonance assignments of the uniformly labeled protein
were laborious and, even for the protein backbone, less than
80% complete due to signal overlap and a wide range of signal
intensities.24 The unique value of 15N-HSQC spectra as a tool
for site-specific sensing lies in the extraordinary sensitivity of
amide chemical shifts toward changes in the chemical
environment. 13C-HSQC spectra of the samples produced in
the present work were obscured by buffer signals, buffer
impurities, and the water resonance (data not shown).
In conclusion, the selective substitution of single tryptophan

residues by 7AW provides a straightforward way of obtaining
site-specific resonance assignments. The preparation of
isotope-labeled azatryptophan is facile, and the capacity to
install 7AW residues in vivo also opens the door to affordable
site-specific labeling if other residues are to be labeled
uniformly, e.g., by perdeuteration as required for NMR analysis
of large proteins. Besides applications in protein NMR,
azatryptophans also endow proteins with attractive fluores-
cence properties distinct from tryptophan.26,27 Site-specifically
installed 7AW residues thus carry promise for fluorescent
studies of ligand binding and protein folding, as 7AW shows a
greater sensitivity to solvent exposure than tryptophan.28

Among the Zika virus NS2B-NS3 mutants of the present work,
7AW at position 89 stands out for enhanced and red-shifted
fluorescence (Figure S7), suggesting lesser solvent accessibility
than indicated by different crystal structures.25,29 We expect
that isotope-labeled 7AW will be of great utility not only for
protein research in solution but also under conditions where
spectral resolution is at a premium, such as dynamic nuclear
polarization (DNP)-enhanced solid-state NMR spectroscopy
and ENDOR-type EPR measurements with paramagnetic tags
in frozen solutions. The ability to install single 7AW residues
with the help of conventional rather than Trp auxotrophic E.
coli strains26,27,30,31 adds to the attractiveness of the system.
The plasmids pRSF-G1(7AW)RS and pET-21(+)Tm9D8*

TrpB were deposited at Addgene (Watertown, MA) to support
distribution and applications.
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Figure 2. 15N-HSQC spectra of the Zika virus NS2B-NS3 protease
mutants with 7-azatryptophan replacing single tryptophan residues.
The spectra were recorded on an 800 MHz Bruker AVIII system
equipped with a TCI cryoprobe, using total recording times between
2 and 12 h per spectrum. Samples were in NMR buffer (20 mM MES,
pH 6.5, 150 mM NaCl) and measured at 25 °C. The spectra are
annotated with the sequence number of the mutation sites. (a) ZiPro
Trp61*_7AW, where the star indicates the location of the residue in
NS2B. The protein concentration was 44 μM. (b) ZiPro Trp5_7AW,
170 μM. (c) ZiPro Trp50_7AW, 140 μM. (d) ZiPro Trp69_7AW,
125 μM. (e) ZiPro Trp83_7AW, 35 μM. (f) ZiPro Trp89_7AW, 75
μM. (g) Reference spectrum recorded for wild-type ZiPro selectively
labeled with 15N/13C-labeled tryptophan. Figure S8 shows a
superimposition of the spectra.
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