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ABSTRACT: SF5Phe, para-pentafluorosulfanyl phenylalanine, is an unnatural amino acid with extreme physicochemical properties,
which is stable in physiological conditions. Here we present newly developed aminoacyl-tRNA synthetases that enable genetic
encoding of SF5Phe for site-specific incorporation into proteins in high yields. Owing to the SF5 moiety’s dichotomy of strong
polarity and high hydrophobicity, the unnatural amino acid forms specific and strong interactions in proteins. The potential of
SF5Phe in protein research is illustrated by (i) increasing the binding affinity of a consensus pentapeptide motif toward the β subunit
of Escherichia coli DNA polymerase III holoenzyme by mutation of a phenylalanine to a SF5Phe residue, (ii) site-specifically adhering
β-cyclodextrin to the surface of ubiquitin, and (iii) selective detection of 19F−19F nuclear Overhauser effects in the Escherichia coli
peptidyl-prolyl cis/trans-isomerase B following mutation of two phenylalanine residues in the core of the protein to SF5Phe. With
increasing use of the SF5 moiety in pharmaceutical chemistry, this general method of functionalizing proteins with SF5 groups opens
unique opportunities for structural biology and in vivo studies.

Genetic code expansion is a powerful tool to extend the
chemical diversity of proteins.1 Over the past decade,

this method has been widely applied to modify proteins with
over 100 noncanonical amino acids to study protein structure
and impart new function.1,2 Because changing the function of
proteins often requires precise tuning of the physicochemical
properties within active sites, genetic encoding of unnatural
amino acids with xenobiotic groups is particularly appeal-
ing.3−6

Fluorine-containing unnatural amino acids (uAA) have
successfully been genetically incorporated into proteins for
19F-NMR analysis to take advantage of the high selectivity with
which 19F-NMR signals can be observed free of background
signal in biological environments.4−6 C−F bonds are also well-
known to influence ligand binding through the specific
electrostatic and lipophilic properties of the fluorine atom,
which often present a considerable advantage in drug
development.7 These properties are most pronounced in the
pentafluorosulfanyl (SF5) group, which possesses approx-
imately 40% higher Hansch hydrophobicity and 9% greater
electronegativity than the trifluoromethyl group.8,9 The high
electron density, conformational rigidity, and lipophilicity of
SF5 groups significantly expand the chemical space of new
drugs and biologicals, but the limited synthetic accessibility of
SF5 groups presents an obstacle for their wider application.8

Here we report a facile way for site-specific incorporation of p-
pentafluorosulfanyl-phenylalanine (SF5Phe) into proteins
(Figure 1). Using an efficient library screening approach
based on fluorescence-activated cell sorting (FACS), we
identified SF5Phe-specific orthogonal aminoacyl-tRNA synthe-
tase (aaRS)/tRNACUA pairs, which are derivatives of the

tyrosyl-tRNA synthetase (TyrRS)/TyrtRNA pair from Meth-
anocaldococcus jannaschii (Mj). The system produces SF5Phe-
containing proteins in high yield. We demonstrate enhanced
binding affinity of a pentapeptide motif toward the β-clamp
subunit of E. coli DNA polymerase III (Pol III) following
mutation of a phenylalanine residue to SF5Phe and strong
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Figure 1. (a) Chemical structures of the unnatural amino acids used
in this study. 1: p-Pentafluorosulfanyl-phenylalanine (SF5Phe). 2: p-
Trifluoromethyl-phenylalanine (CF3Phe). 3: p-Chloro-phenylalanine
(ClPhe). (b) Electrostatic potential surfaces were calculated using
density functional theory at B3LYP level with 6-311++G (d,p) basis
set, showing SF5Phe has a more electronegative side chain and a
stronger dipole moment.
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binding of β-cyclodextrin to SF5Phe incorporated into
ubiquitin. In addition, two SF5Phe were installed in peptidyl-
prolyl cis/trans-isomerase B (PpiB), which, for the first time,
allowed the selective observation of intramolecular 19F−19F
nuclear Overhauser effects (NOE) in a protein.
To identify an aaRS enzyme for the incorporation of SF5Phe

into proteins in response to an amber stop codon, the library
plasmid pBK-MjYRS, which sources a mutant MjTyrRS and
TyrtRNACUA, was constructed (Figure S1). The selection
plasmid pBAD-GRFP encoded the amber codon interrupted
fusion of mNeonGreen green fluorescent protein (GFP)10 and
mCherry red fluorescent protein (RFP)11 (Figure S2).
Functional SF5PheRS enzymes were screened using FACS

on an Aria II high speed cell sorter. E. coli DH10B cells
harboring both pBK-MjYRS and pBAD-GRFP were cultured
under different selective conditions in subsequent screening
rounds (Figures 2 and S3). Already the first positive selection
round conducted in the presence of SF5Phe (1P+) displayed
more RFP-positive (R+) cells than the same experiment
conducted without SF5Phe (1P−), indicating that a large
number of mutants in the tRNA synthetase library were

capable of incorporating SF5Phe. The second negative round
was carried out to remove false positive MjTyrRS variants that
recognize endogenous amino acids. Selection was ended after
the third positive round, as the ratio of R+ population between
the 3P+ and 3P− samples had reached 58.1:2.4%, which
indicated most of the remaining gene pool was selective as well
as specific for SF5Phe; 32 candidates that produced high RFP
fluorescence were isolated and sequenced. Remarkably, all of
these sequences were different (Table S2). The four SF5PheRS
enzymes that delivered the highest incorporation yields (SF20,
SF61, SF87, SF100) and five randomly selected candidates
(SF19, SF29, SF88, SF95, SF109) were subsequently coex-
pressed with a His6-amber(TAG)-RFP reporter protein
(H6RFP) encoded by the pBAD-H6RFP plasmid for mass
spectrometry analysis. None of them showed mis-incorpo-
ration of endogenous amino acids (Figure S5) at the amber
site. The core structures around the substrate binding pocket
of SF61 (Leu32Val, Val65Ser, Met109Ala, Ala159Val,
Leu162Lys) and SF100 (Leu32Val, Met109Pro, Ala159Phe,
Leu162Phe) were modeled using Rosetta structure prediction
tools and indicate strong hydrophobic interactions with the
SF5Phe ligand (Figure 3a,b).

To illustrate the potential of SF5Phe in the design of new
protein interactions, we explored the potential of a Phe →
SF5Phe mutation to increase the binding affinity of the clamp
binding motif (CBM) with the E. coli β-clamp protein. The
interaction between CBM and sliding clamp is critical for
nucleotide extension and proofreading exonuclease activity of
Pol III and has been validated as an antibacterial drug
target.13−15 The consensus sequence QLDLF (cons1) is
known to bind to the β-clamp with high affinity16 and we
probed this interaction further by replacing the C-terminal Phe
residue by either SF5Phe, p-trifluoromethyl-phenylalanine
(CF3Phe), or p-chloro-phenylalanine (ClPhe), which was
previously reported to confer sub-μM binding.17 A ubiquitin

Figure 2. Histograms of three selection rounds to identify active
SF5PheRS enzymes via FACS cell sorting. Cells containing the whole
library were cultured with 1 mM SF5Phe (1P+) or without uAA
(1P−). The RFP positive (R+) population in 1P+ (indicated by the
red horizontal line) was selected for the next round of selection
(2N−), which was conducted in the absence of SF5Phe. The RFP
negative (R−) population of 2N− (indicated by the black horizontal
line) was collected and cultured with 1 mM SF5Phe (3P+) or without
SF5Phe (3P−). The R+ population in 3P+ was sorted for further
characterization. The black and red vertical lines identify the means of
the R−/R+ populations.

Figure 3. Rosetta-predicted structures of (a) SF61 and (b) SF100
with SF5Phe as ligand. Mutation sites are highlighted in magenta and
green. (c) Fluorescence polarization competition assay of Ubq-cons1
samples with either SF5Phe, CF3Phe, ClPhe, or Phe as the C-terminal
residue (with Phe corresponding to the wild type). The standard error
of duplicates or triplicates of each sample is shown by the error bar.
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construct was designed, where the C-terminal glycine residue
of ubiquitin was mutated to alanine and followed by the cons1
motif with the phenylalanine residue mutated by introduction
of an amber codon (TAG), which was followed by the Mxe-
intein18 with C-terminal His6-tag (Ubq-cons1-int). The
corresponding pETMSCI-ubq-cons1-int plasmid (Figure S6)
was used together with a modified pEVOLV vector19

containing the SF61 gene and opt-MjYtRNA (referred to as
pEVOL-SFRS). SF61 proved to successfully incorporate also
CF3Phe (Figure S9). Co-transformation of E. coli BL21(DE3)
with pEVOL-SFRS and pETMSCI-ubq-cons1-int and protein
expression in the presence of 1 mM SF5Phe or CF3Phe yielded
full-length Ubq-cons1-int samples, which were readily purified
via Co2+ affinity chromatography and cleaved from the C-
terminal Mxe-intein and His6-tag by treatment with β-
mercaptoethanol to generate the final Ubq-cons1 mutants.
Similarly, pEVOL-CNRS encoding the polysubstrate-specific
CNPheRS was used to incorporate ClPhe.20 The identity of all
protein products was confirmed by mass spectrometry (Figure
S7). A fluorescence polarization competition assay21 using
these Ubq-cons1 mutants revealed that both ClPhe (IC50 = 0.8
μM) and CF3Phe (IC50 = 4.3 μM) significantly increased the
binding affinity to the sliding clamp, while SF5Phe (IC50= 15
μM) showed slightly higher affinity compared to the wild-type
Phe (IC50 = 21 μM) (Figure 3c). Computational modeling
indicated that the interaction of the C-terminal residue of the
cons1 motif with the β-clamp is governed by hydrophobic
contacts, with the binding pocket being close to electroneutral
(Figure S8b). In view of the high electronegativity and
relatively large volume of the SF5 group, its binding affinity to
the β-clamp could have been expected to be lower than that of
ClPhe or CF3Phe. Yet, it proved to be a better binder than
phenylalanine in the tightly binding consensus CBM.
SF5Phe’s strongly hydrophobic and polar interactions also

naturally lend themselves to site-specifically adhere a protein to
membranes and other fluorophilic molecules. We employed β-
cyclodextrin (βCD) as a probe. It is a well-studied model
system for hydrophobic binding and is used in many
applications from biosensing to protein delivery.22−24 As
expected, βCD strongly binds SF5Phe as free amino acid (Kd =

830 μM; Figure S10c), whereas phenylalanine displays only
weak binding. We then further expressed ubiquitin with
SF5Phe in the solvent exposed residue position Glu18 (yield
20.9 mg/L) and found it to bind βCD with even higher affinity
(Kd = 107 μM; Figure S10a). In comparison, the same
ubiquitin construct with CF3Phe shows approximately 45 times
weaker binding (Kd = 4.85 mM; Figure S10b), providing
further evidence that SF5 is more than an expensive CF3
replacement.25 Such high affinities for βCD are rivaled only by
derivatives of adamantane.26 The moderately hydrophobic
adamantane moiety optimally fills the cavity of βCD and, to
our knowledge, has not been genetically encoded to date.
Next we tested SF5Phe as a structural probe in NMR

spectroscopy. Two phenylalanine residues (Phe27, Phe98) in
the structural core of PpiB point their side chains toward each
other, bringing Hζ atoms within 6 Å. We mutated both
residues to SF5Phe to study the NMR spectroscopic properties
of SF5 groups in proteins (Figure S11). The amber-interrupted
PpiB gene was encoded by a pET3a vector. pEVOL-SFRS and
pET3a-PpiB were cotransformed into E. coli BL21(DE3) and
cultured with 2 mM SF5Phe. The double-SF5Phe-labeled PpiB
mutant was produced with a yield of 30 mg of purified protein
per liter of cell medium (Figure S12). The protein was folded
despite the burial of the two bulky SF5 groups in the core of
the protein, suggesting that the space demand imposed by the
SF5 groups is energetically counterbalanced by favorable
hydrophobic interactions between the SF5 groups. The two
SF5 groups exhibited different chemical shifts in 1D 19F-NMR
spectra, with the 19F-NMR signals of the four equatorial
fluorine atoms split into a doublet (∼62.3 ppm), and the axial
fluorine into a quintet (∼83.5 ppm; Figure S13). 19F−19F
NOESY experiments conducted with mixing times of 200 μs
and 200 ms displayed cross-peaks at the longer mixing time,
which were absent when the mixing time was short (Figure 4).
This demonstrates that 19F−19F NOEs allow direct con-
firmation of short contacts in medium-sized proteins without
any other resonance assignments. To the best of our
knowledge, this is the first observation of intramolecular
19F−19F NOEs in a protein.

Figure 4. 19F−19F NOESY spectra of a 0.56 mM solution of the PpiB double-SF5Phe mutant in 90% H2O/10% D2O, showing NOE cross-peaks
between residues 27 and 98. The spectra were recorded on a 400 MHz NMR spectrometer using mixing times of (a) 200 μs and (b) 200 ms. The
spectral region shown displays the diagonal peaks of the equatorial fluorine atoms of the SF5 groups, which appear as doublets (

2JFF = 149 Hz) due
to couplings with the axial 19F spins. Splittings due to 19F−19F couplings were eliminated in the F1 dimension by recording the experiment in a
constant-time fashion (t1const = 7 ms),12 whereas the 19F−19F doublet fine-structure was retained in the F2 dimension. Cross-peaks between the two
sets of four equatorial 19F spins were observable only when using the longer mixing time. The spectral region of the axial 19F spins is not shown.
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In summary, we demonstrated that the new unnatural amino
acid SF5Phe can be efficiently and site-specifically incorporated
into proteins. It can be used as a 19F-NMR probe and serves as
a versatile hydrophobic binding moiety with high polarity and
hydrophobicity. Functional SF5Phe tRNA synthetase variants
exhibit active sites complementary to the properties of SF5Phe
(Figure S14). Live/death screening, mass spectrometry
analyses, and deep sequencing confirmed their remarkable
activity, selectivity, and diversity in sequence, yielding an
estimate of 1.4 × 104 active mutants (Figures S4 and S5). To
our knowledge, such a high diversity of functional MjTyrRS
variants has never before been observed for any other
unnatural amino acid, which highlights the exceptional
versatility of the SF5 group to form specific interactions.
Considering the unique physicochemical properties of the SF5
group, the capacity to genetically encode SF5Phe in high yields
adds an important tool for targeting protein−protein and
protein−membrane interactions. In particular, the dichotomy
of high polarity, which confers specific interactions and
enhances water solubility, combined with superhydrophobicity,
which supports membrane permeability and increases affinity
to hydrophobic pockets, make SF5Phe an attractive new
building block for polypeptide-based pharmaceuticals and new
materials. In addition, the site-specific introduction of the SF5
group provides a useful 19F-NMR probe for protein studies.
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