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SUMMARY

Utilization of coupling constants as restraints in computational structure refinement is reviewed. In
addition, we address the effect of conformational averaging and examine different approaches to apply the
restraints ‘when the experimental observable is obviously & result of averaging. Here, two different computa-
tional methods are compared. The simulation of a single structure with time-dependent restraints produces
results very similar to those obtained with the calculation of numerous copies of the molecule (an ensemble
of structures) and ensemble averaging. The advantages and disadvantages of the two methods are illustrated
with simulations of cyclosporin A, for which 117 NOEs and 62 homo- and heteronuclear coupling constants
have been measured.

INTRODUCTION

Structure-activity relationships (SAR) are only as accurate as the structures on which they
have been developed. The inherent flexibility of peptides is a hindrance to the development of
SARs for peptidic drugs. Methods to overcome this problem include cyclization and the use of
nonnatural amino acids which allow for the introduction of conformational constraints and speci-
fic conformational features (i.e., control the side-chain orientations) [1-9]. The development of
more quantitative relationships requires structures of the highest quality. From the point of view
of an experimentalist, this requires that as much experimental data as possible be utilized in the
refinement of the conformation. In this regard, measurement of NOEs is the most important.
However, for peptides, which we will concentrate on here. the number of NOEs is rather limited,
when compared to proteins, because of a large ratio of surface area to core.
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Coupling constants are one source of conformational information which has been available
for a long time in NMR investigations in solution. The conformational information is obtained
from the equation developed by Karplus [10]: .

357=Acos’(8)+Bcos(9)+C )

which relates the coupling constant to the dihedral angle subtended by the coupled atoms, 6. For
a long time coupling constants were used only as a secondary check of the structure, after the
refinement procedure; a structure was developed from the NOEs and then the relevant dihedral
angles compared to the answers obtained from Eq. 1. The problem arises from the multiple
answers obtained from Eq. 1. A plot of Eq. 1 is shown in Fig. 1 (solid line) for ¢ and the homo-
nuclear coupling constant *Jyy g, Using A, B and C values of 9.4, =1.1 and 0.4, respectively [1 1].
In Fig. 1, an example coupling constant of 8 Hz, producing four possible ¢ dihedral angles, is
indicated by a horizontal line.

One way of addressing the multiple answers from Eq. 1 is the measurement of more than one
coupling constant about the given dihedral angle [11,12]. There are many additional coupling
constants, especially heteronuclear coupling constants, that can bé measured [11-24]; some -
examples for the backbone dihedral angle ¢ are given in Fig. 2. In addition to the homonuclear
*Jinmo there are two heteronuclear coupling constants, *Jin.cp and *Teome that can readily be
measured, even in molecules with magnetically active heteronuclei in natural abundance. Each
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Fig. 1. An illustration of the Karplus curve, Eq. 1, using A, B and C coefficients of 9.4, —-1.1 and 0.4, respectively (solid
line). The four ¢ torsions from a 3] anoe, coOupling constant of 8.0 Hz are shown with a horizontal line. The penalty
function, Eq. 2, for a coupling of 8.0 Hz is shown as a dashed line.
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Fig. 2. Newman projection of the coupling constants containing information about the ¢ dihedral angle of a peptide backbone.

of these additional coupling constants produces up to four (sometimes two, depending on the
coupling and the A, B and C parameters) allowed dihedral angles. A simple comparison of the
allowed torsions for each coupling usually produces a rough agreement [22,23]. However, the
coupling constants are still being used only as a secondary check, and not utilized in the develop-
ment of the peptide conformation.

One method to utilize coupling constants in the computational refinement of the structure is
the application of dihedral angle restraints, either to one particular value or to a range, of-allowed
values [25-27]. The most common application of this method is the use of only ‘extreme’ coupling
constants. As can be seen in Fig. 1, *Jyny. couplings greater than 8.7 Hz produce only two
values, centered about a ¢ of —120°. Therefore, for such couplings a dihedral angle restraint
would be applied, restricting the torsion to —120° [25] or to a small range of values centered
about this value [26,27]. Often 8.0 Hz is utilized as the cutoff for ‘extreme’ coupling constants
and the possibility of a positive ¢ dihedral angle is ignored, which is based on the fact that in
protein structures positive ¢ values are seldom observed. Similar approximations are commonly
used for small coupling constants. However, in the examination of peptides, either cyclized or
containing unusual amino acids, the possibility of positive ¢ dihedral angles cannot be excluded.
In fact, there are many examples of such dihedral angles in peptides.

An approach that overcomes this problem was suggested by Kim and Prestegard {21]. The
penalty function directly utilizes the measured coupling constant and the Karplus curve:

VJ = %KJ (J exp J theo)2 ‘ (2)

where I, is the experimental coupling constant, K; is a force constant to weigh each coupling
individually and J, is the theoretical coupling calculated using Eq. 1. This function can be
applied without any approximations of allowed dihedral angles, in contrast to dihedral angle
restraining. The most important advantage of this formalism is the application of multiple
coupling constants; each experimentally determined coupling constant can be included as an
experimental restraint [28,29]. Each of the couplings can be individually scaled, according to the
error of the experimental values and the confidence in the A, B and C coefficients of Eq. 1 (i.e.,
the homonuclear coupling constants as a general rule are determined with less error than the
heteronuclear couplings). As an example of the usefulness of this method a profile of the penalty
violation, ‘energy’, is given in Fig. 3. The inclusion of the heteronuclear coupling constants rules
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Fig. 3. Profile of the violation ‘energy’ for the ¢ torsions for three coupling constants measured for Ala’ of cvclosporin
A: Ty no (dot-dash), T ancp (dot) and 3T cogtyse (daSH): and for the sum of the functions (solid line).

out many of the values allowed by the homonuclear coupling. The use of this method has been
Jlustrated for a number of cyclic peptides [28,29].

Although there are several different coupling constants that can be measured for o and for
the side-chain (e.8-, ' 1) dihedral angles, there are 0o three-bond coupling constants that can
be easily obtained for the y torsion. The available couplings, ie Tpe (see Fig. 2). are Very
difficult to measure and are small, and therefore have a large experimental error. However, Egli
and Von Philipsborn [30] have proposed a relationship for the heteronuclear one-bond coupling

between the a-carbon and -proton, gece With dependence on both the ¢ and ¥ torsions. This
expression,

iy= A +Boos? (¢ +30°) + Coos’ (W 30°) 3)

incorporated into a penalty function (Eq. 2). has produced very promising results: the three-
bond couplings yield a small range of allowed torsions while the one-bond couplings supply
information on the ¥ dihedral angle [31]. An example ‘energy’ violation profile for a Jewne Of
140 Hz is shown in Fig. 4. One advantage of the one-bond coupling is the ease of measurement,
simply via a heteronuclear multiple-quantum correlation spectrum [32] without decoupling of
the carbons during acquisition of the proton signal. Recently a new equation has been developed
for the one-bond coupling constant [33]. The results using this relation are Very similar to those
obtained with Eq. 3.

One serious drawback of the application of coupling constant restraints in computational
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Fig. 4. The violation ‘energy’ for a one-bond 'Je,y, coupling of 140 Hz, calculated using Egs. 2 and 3.

refinement is the possibility of conformational mobility; the measured coupling is clearly an
averaged quantity. The averaging can be thought of as an average of one structure over time
which has led to the development of time-dependent experimental restraints, first applied with
NOEs [34,35] and recently with coupling constants [36]. The energies and forces are calculated
from the restraints averaged over a specific time span, allowing for flexibility on the time scale
over which the restraints are averaged.

Another approach is to treat the coupling constants as an instantaneous average over an
ensemble of structures. The utilization of multiple copies of the system and application of NOEs
as ‘effective restraints’ (i.e., the energies and forces for the restraints are derived from the
average of the ensemble) have been previously described [37]. The addition of coupling constants
to this ensemble method has been utilized [38] to reproduce the correct population of side-chain
rotamers, as predicted by the Pachler equation [39].

Although these two approaches for averaging of experimental restraints appear different and
in practice will be carried out using different computational methods, theoretically both must
produce the same result. Here, we compare the use of time-dependent restraints and the
ensemble method with the application of both NOEs and coupling constant restraints. The
methods are illustrated for extended calculations carried out on cyclosporin A (CsA), for which
117 NOEs and 62 homo- and heteronuclear coupling constants have been measured [29,40].

EXPERIMENTAL METHODS

Coupling constant restraints
The coupling constant restraints were applied in molecular dynamics simulations and in a
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TABLE 1
EXPERIMENTAL AND CALCULATED COUPLING CONSTANTS FROM MD SIMULATIONS USING TIME-DEPEND-
ENT NOE AND COUPLING CONSTANT RESTRAINTS AND AN ENSEMBLE CALCULATION OF CYCLOSPORIN A

Coupling constant (Hz)

Residue Dihedral angle Three-bond coupling® Exp. td-MD Ensemble
MeBmt! o T ttanci1) 5.0 3.5 3.9
x* T (5) 6.0 6.1 5.9
Tty 0.5 2.7 0.5
Abu? o 3T noHa 9.9 9.2 9.9
X *Taorp (R 7.1 6.9 6.6
JHa g (S) 8.0 5.6 7.0
JC up (R) 1.9 3.5 3.0
Tems (S) 4.7 3.4 4.1
MeLeu* o JHQ -1 25 3.2 2.5
x! JHa us (R 11.8 10.4 11.3
T (S) 42 3.4 4.2
) 29 1.8 2.2
i Tews (S 1.8 2.0 1.3
i v Tipcs (RR) 2.7 3.5 3.3
| Juscs (S.R) 2.2 3.5 4.0
! *Tug.cs (R.S) 6.7 8.9 8.5
: *Tap.cs (S.5) 2.2 3.5 3.3
Val’ [ Y inveHa 8.5 9.0 8.5
: *Temncs 1.4 1.2 1.4
T -ci-n 2.7 2.6 2.7
x! ’JHu Hp 9.8 114 10.7
; : JHQ s (R) 1.0 2.0 1.8
: Tecy (5) 3.2 3.1 4.0
] MeLeu® x! Thterp (R) 6.0 4.9 5.8
: ' JHa up (S) 10.3 9.4 10.0
] JC up (R) : 7.3 74 7.6
: Tenp (S) _ 1.5 1.8 1.3
i e JHMS (R.R) 3.0 45 4.0
JHﬁ s (S.R) 6.0 7.7 7.6
} JHB s (R.S) 26 3.7 43
l *Tapcs (S.5) 34 4.5 4.0
i Ala’ o ’JH\‘ Ho 7.4 9.6 7.4
o T 1.4 1.3 15
b *Teeci- 43 2.9 4.3
! D-Ala® o A - 3.0 8.5 8.0
*Tan.c 1.0 1.6 1.0
; J Ho-C(i-1) 24 2.3 2.4
MeLev’ o Thieco1) 2.7 3.3 2.7
x! Jch ug (R) 11.2 9.4 9.6
AIS) 4.6 4.4 4.6
v JH&CE (R.R) 4.4 4.8 3.6
JHW (S.R) 2.0 3.7 3.5
JHB cs (RS) 5.3 7.4 3.6
*Tup.cs (S.5) 2.6 4.8 3.5
MeLeu'® x Jch ng (R) 8.2 7.0 8.2

Titeetip () 6.5 6.1 6.4




TABLE 1 (continued)

Coupling constant (Hz)

Residue Dihedral angle Three-bond coupling® Exp. td-MD Ensemble
MeLeu' pa *Tup.cs (R.R) 3.8 3.9 3.8
Tpcs (S-R) 4.5 5.0 4.5
MeVal'! b T a1 3.4 3.5 3.4
x! T toeHp 11.0 10.8 11.6
Jocy (R) 1.2 2.0 1.8
Taecy ) 2.5 3.7 3.1

2 The @ protons and the y and & methyl groups of the side chains of the valines and leucines have been diastereo-
topically assigned [40]; assignments are indicated in parentheses.

modified distance-bounds-driven dynamics refinement protocol using Eq. 2, following pro-
cedures previously described [21,28,38]. The molecular motions which affect the coupling con-
stants are accounted for by modification of the calculation of the theoretical coupling constant
used in Eq. 2. The time-dependent method calculates the time average of the cos.(6) series:

<cos™8(t)> = [1 —exp(—At/1)]cos™ 6(t) + exp(—At/t) <cos™ (t—1)> 4

where At is the time step of the simulation. The exponential time decay is used so that the
average restraint is still effective, even with long simulation trajectories. Equation 4 is then used
to calculate Jy..:

T oo = A <cos? 6>+ B <cos6>+C (3)

which is used in Eq. 2 to calculate the penalty function [36].
Within the ensemble method multiple copies of the molecule are utilized, and J., is calcu-
lated by a simple average of the couplings for each member of the ensemble:

N |
<Jtheo>=f§'§ J; (6)

This average value is used to calculate the energies and forces following Eq. 2, which are then
applied to each member of the ensemble. Each member of the ensemble may be well away from
the ‘target’ coupling constant, but if the average as calculated from Eq. 6 is in agreement with
the experimental value, the penalty function (Eq. 2) is zero and no forces are applied.

For both of the calculations, the 117 NOEs previously reported were utilized as restraints [40].
For the upper and lower distance restraints, respectively, 5% was added to or subtracted from
the NOE-derived distance. In addition, the 62 coupling constants as previously described [29]
(listed in Table 1), were also utilized as restraints.

Time-dependent restraints

The MD simulations with time-dependent NOE and coupling constant restraints were carried
out in vacuo with the stochastic dynamics (SD) module within GROMOS [41], solving the
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Langevin equation of motion [42). In SD calculations, the solvent is treated as a virtual surround-
ing, calculated by a stochastic force and a force proportional to the velocity and relative friction
coefficient, which mimic collisions of the solute with the solvent. The relative friction coefficient
is evaluated by Stoke’s law of friction and is scaled by a relative solvent-accessible area factor
[36]. The parameters used to mimic the solvent were derived from CCl,.

The step size for the simulation was set to 2 fs using SHAKE [43], with the nonbonded inter-

-actions updated every 50 steps. A cutoff radius of 10 nm and a tight coupling 'to a temperature

bath [44] (100 fs relaxation time) were used. The force constant for the couphng constants was
2.0 kJ mol™ Hz™ Wlth a relaxation delay-time, T, (Eq. 4) of 20 ps.

Ensemble calculations :

The ensemble-averaged restraints were applied using a modified version of the simplified
dynamics program, distance-bound-driven dynamics (DDD) [45], which includes the option for
coupling constant restraints (called DADD for distance- and angle-driven dynamics) [38]. For our

~calculations, 50 structures were produced by the random metrization procedure [46,47], which

were then refined with DDD using constant NOE and coupling constant restraints. The ‘force
field” of the DDD calculations is

V=Vya+ Vyos+ V; . | (7N

The holonomic expression. Vi, maintains the topology of the molecule using oriented chiral
volumes and a matrix of upper and lower bounds on the interatomic distances [37,46,48]. The
Vyoe and V; are standard penalty terms, similar to that shown in Eq. 2. The ensemble calcula-
tions are 1dent1ca1 to those used for the DDD method, but with the forces from the experimental
observations calculated from an ensemble average of all the structures [37,38]. To create a starting
ensemble of structures, the 21 lowest energy structures from the DDD calculations discussed
above were copied 20 times each, creating an ensemble of 420 molecules. The ensemble calcula-
tions were carried out for 10000 steps with a step size of 20 fs at a temperature of 500 K and
with a tight coupling to a temperature bath [44]. After this the temperature was slowly decreased
during 2500 steps by weak coupling to a temperature bath of 1 K.

RESULTS AND DISCUSSION

The coupling constants calculated from the time-dependent MD simulations and the ensemble
calculations are given, along with the experimental values, in Table 1. The coupling constants
were calculated for each structure of the trajectory or ensemble and then av reraged. The coupling
constant from the average dihedral angle will produce quite different, and for our purposes false,
answers. The average dihedral angles from the two calculations are given in Table 2. The stan-
dard deviation of the angles were calculated from the trajectory of the time-dependent MD
simulation, using standard methods [41]. To obtain a measure of the range of values from the
ensemble method, the dihedral angle deviation (dhad) [46] was calculated.

The experimental coupling constants from both methods are mostly well reproduced. The
couplings involving backbone dihedral angles are in especially good agreement, one exception
being the values for Ala’ Irom the time-dependent calculation. The results from the ensemble
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calculation are much better, but the range of values observed for torsion aﬁéle d of Ala’ is
extremely large (i.e., a dhad of 80°). However, for the present discussion the coupling constants
of the side chains are of greater interest, since dynamics and molecular motions certainly play an

important role.

TABLE 2

AVERAGE DIHEDRAL ANGLES FROM MD SIMULATION USING TIME-DEPENDENT RESTRAINTS

AND AN ENSEMBLE CALCULATION OF CYCLOSPORIN A

td-MD Ensemble
Residue Dihedral angle MD ave. Ave. SD:? Ave. Dhad®
MeBmt' o -89 -110 9 -119 17
v 112 112 24 120 13
x! =77 176 >100 -41 12
Abu? o -97 -103 20 -103 19
y 100 94 14 54 45
x! -70 -72 67 1 34
Sar® o 79 68 17 101 43
W -108 -120 20 -123 53
MeLeu* o -122 -107 13 -96 18
v 30 32 23 -3 22
x! -151 -80 29 =79 68
x -172 -96 54 -38 54
Val® o -104 ~103 22 -132 60
s 123 120 11 149 30
x -61 -56 30 —66 35
MeLeu® 0 -82 -93 13 -117 28
88 106 23 97 3
v
1! -178 -155 29 —46 88
v -175 -134 54 38 3
Ala’ o -67 -102 12 =50 80
v 54 58 23 23 46
D-Ala® o 80 96 19 67 48
v -137 -128 12 -132 19
MeLev’ o -125 -132 11 -136 27
i 116 110 12 110 23
1 —-60 -110 65 ~45 30
r -70 -103 42 -161 52
MeLeu'® ) -131 -119 10 -128 32
i 86 99 14 95 25
x! ~148 -119 45 -82 68
y -78 -106 40 —164 61
MeVatt! o -120 -115 12 —-112 16
v 133 118 16 162 8
x! -60 -151 >100 —66 18

The results from a previous MD simulation [40] using only NOE restraints are given for comparison.

* The standard deviation has been calculated from the trajectory of Cartesian coordinates, following the standard

procedure of finding the minimum rotation between the current and previous value {41].

® For the ensemble calculation, the deviation of the dihedral angle, dhad, has been calculated. following published

procedures [46].
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The results of the side-chain couplings aré also good..For the ' torsion, the couplings are in
good agreement with the experimental values. The exception is the x’ value of the MeBmt from
the MD simulations. The problem can be associated with the hydroxyl group of this amino acid,
Le., the partial charges of this group stabilize a hydrogen bond with the carbonyl of the back-

the torsions. A better representation of the results is given in Fig. 5. Here, the values for the
complete ensemble are shown for these side-chain torsions. It is important to note that for the

most part the three staggered rotamers are observed, even though within the ensemble method

there is no dihedral angle expression to forbid the eclipsed rotamers. The combination of the

coupling constants and the NOEs naturally creates the preference for the staggered rotamers. The

side chain of Abu? is an exception, showing a smeared distribution from —60 to 60°, which

explains the average dihedral angle of 1° (Table 2). v ' :

180 ; T
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3
260 e,
© ] *
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A6 * l : :
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!
-180 " *
2 4 6 8 10
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Fig. 5. A plot of the x' dihedral angles for the residues of cyclosporin A obtained from an ensemble calculation of 420
structures.
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There is 2 much larger deviation of the experimental and theoretical 'couplingfé;onstants with
the y° dihedral angle. This is true with both calculation procedures. The reasons for the deviations
could arise from the obviously greater flexibility of these torsions, much greater than observed for
the ' torsions. One consequence of this flexibility is that there are far fewer NOEs to help in the
definition of these dihedral angles. Another important point concerning the x> torsion is the A,
B and C coefficients used in Eq. 1. These coefficients have not been developed specifically for these
coupling constants, but were calculated from more general *Jy;- couplings [11].

Both of the computational approaches reproduce the structure calculated previously using only
NOE restraints [40], see Table 2. There are some small differences, particularly with the side-chain
torsions as discussed above. Some probléms mentioned above with the time-dependent restraints
must be attributed, not to the application of the restraints, but to the MD method in general (i.e.,
the necessity to use solvent to avoid in vacuo effects). On the other hand; the ‘force field’ utilized
in the ensemble calculations is too simple for most practical purposes. If ‘realistic’ energies are
required for comparative purposes,‘ the structures will need to be further examined with a full
molecular mechanics force field. As far as computational requirements are concerned, the
methods are similar in CPU usage. This, of course, will change drastically if explicit solvents are
reQuired. The ensemble method, utilizing a distance bounds matrix created from standard DG
methods, requires much more memory than the MD method.

CONCLUSIONS

In this article the use of coupling constants as experimental restraints in computer structural
refinement has been reviewed. To account for the obvious averaging of the coupling constants,
two different approaches have been compared. Cyclosporin A was examined since the structure
in chloroform is extremely well determined [40] and there are a large number of both coupling
constants and NOEs. Both methods reproduce the coupling constants quite well.
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