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ABSTRACT

Motivation: Disulfide bonds are primary covalent crosslinks

between two cysteine residues in proteins that play critical roles

in stabilizing the protein structures and are commonly found in

extracy-toplasmatic or secreted proteins. In protein folding predic-

tion, the localization of disulfide bonds can greatly reduce the search

in conformational space. Therefore, there is a great need to develop

computational methods capable of accurately predicting disulfide

connectivity patterns in proteins that could have potentially

important applications.

Results: We have developed a novel method to predict disulfide

connectivity patterns from protein primary sequence, using a

support vector regression (SVR) approach based on multiple

sequence feature vectors and predicted secondary structure by

the PSIPRED program. The results indicate that our method could

achieve a prediction accuracy of 74.4% and 77.9%, respectively,

when averaged on proteins with two to five disulfide bridges using

4-fold cross-validation, measured on the protein and cysteine pair on

a well-defined non-homologous dataset. We assessed the effects

of different sequence encoding schemes on the prediction perfor-

mance of disulfide connectivity. It has been shown that the sequence

encoding scheme based on multiple sequence feature vectors

coupled with predicted secondary structure can significantly

improve the prediction accuracy, thus enabling our method to

outperform most of other currently available predictors. Our work

provides a complementary approach to the current algorithms that

should be useful in computationally assigning disulfide connectivity

patterns and helps in the annotation of protein sequences generated

by large-scale whole-genome projects.

Availability: The prediction web server and Supplementary Material

are accessible at http://foo.maths.uq.edu.au/�huber/disulfide

Contact: kb@maths.uq.edu.au

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Disulfide bonds are primary covalent crosslinks formed

between two cysteine residues in the same or different protein

polypeptide chains. They play critical roles in stabilizing the

protein structures and mediating protein biological functions

(Inaba et al., 2006; Kadokura et al., 2004). They are

commonly formed in extracytoplasmatic compartments in

prokaryotes owing to the oxidizing extracellular environment

(Kadokura et al., 2003), while in eukaryotic cells disulfide

bonds are formed in the lumen of the endoplasmic reticulum

(ER) that provides a sufficiently oxidizing environment to

allow for its formation (Sevier et al., 2007). As a well-

conserved and stereospecific secondary structural element of a

protein, disulfide linkage can impose a substantial distance

and angular constraint on the backbone of the protein, thus

making an important contribution to the stabilization of

protein tertiary structures (Chuang et al., 2003). Disulfide

bonds also play critical roles in the protein folding process

and help assist proteins to fold into their correct tertiary

structures. Statistical analyses and modeling simulations

regarding disulfide connectivity have emerged in recent years

(Cheek et al., 2006; Thangudu et al., 2005; Thornton, 1981),

the majority of which have focused on the analysis of the

distribution of disulfide bonds and their specific sequence

environments (Abkevich and Shakhnovich, 2000; Gupta et al.,

2004; Harrison and Sternberg, 1994; Hartig et al., 2005; van

Vlijmen et al., 2004).

Disulfide connectivity patterns give descriptions of the

disulfide topology and how the cysteine residues are arranged

sequentially to form disulfide bridges. Recent studies have

indicated that disulfide connectivity patterns can be applied

to efficiently discriminate the structural similarity of protein

structures (Chuang et al., 2003) and discover protein

structural homologs (Gupta et al., 2004; van Vlijmen et al.,

2004). Furthermore, in protein folding prediction, the

localization of disulfide bonds can greatly reduce the search

in conformational space and help towards the prediction of

protein three-dimensional structure (Tsai et al., 2005).

Nevertheless, the sequence–structure gap is widening rapidly

as a consequence of the large-scale whole-genome projects*To whom correspondence should be addressed.
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(Bairoch and Apweiler, 2000; Berman et al., 2000) and in this

context computational methods that could reliably predict

protein structure and function given its primary sequence

only will continue to be valuable tools either from a

computational or from a biological perspective (Thornton,

2001). Therefore, there is a great need to develop computa-

tionally efficient methods capable of accurately predicting

disulfide connectivity of any protein given only its amino

acid sequence. This would have potentially important

applications, especially in providing insight into the structure

and function of disulfide-rich proteins and in further under-

standing the role of the disulfide bridge in helping proteins

reach their native conformations in the protein folding

process.
The prediction of disulfide connectivity in protein has been

investigated by a variety of computational methods with the

prior knowledge of disulfide-bonding states of cysteines (Baldi

et al., 2005; Ceroni et al., 2006; Chen and Hwang, 2005; Chen

et al., 2006; Cheng et al., 2006; Fariselli and Casadio, 2001;

Fariselli et al., 2002; Ferre and Clote, 2005a,b; Tsai et al.,

2005; Vullo and Frasconi, 2004; Zhao et al., 2005). In general,

disulfide-predicting approaches fall into two major categories:

pattern-wise methods that attempt to predict disulfide con-

nectivity on the basis of the disulfide connectivity patterns and

pair-wise methods that are associated with the cysteine residue

pairing. Although these two different methods provide a

prediction of disulfide connectivity, they both have intrinsic

drawbacks. For instance, pair-wise methods rely on extracting

pattern-based disulfide-forming sequential features and thus

fail to abstract many of the other essential global features,

while pattern-wise methods lack the consideration of the

obviously important sequential information in the neighboring

context of disulfide-bonded cysteine residues. In a recent

prediction study, Chen et al. (2006) proposed a two-level model

to combine both the pattern-wise and pair-wise based methods

and achieved a prediction accuracy of 70%. These prediction

studies suggest that disulfide connectivity is not only deter-

mined by the local protein sequence environment but also

depends on the global information of the whole protein.

However, although the prediction of disulfide connectivity has

reached good accuracy, there is room for further improving the

prediction performance.
In this article, we introduce a novel approach that requires

only the protein’s amino acid sequence as input to predict

disulfide connectivity with high accuracy. It uses support vector

regression (SVR) based onmultiple sequence feature vectors and

predicted secondary structure by the PSIPRED program. Our

method can achieve an overall prediction accuracy of 74.4% and

77.9% using 4-fold cross-validation, tested on the protein and

cysteine pair, respectively when averaged over proteins with two

to five disulfide bridges. We further assessed the effects of eight

different sequence encoding schemes on the prediction perfor-

mance and compared the prediction accuracy of our method

with other disulfide-predicting approaches. The results demon-

strated that our method has performed in most cases better than

other prediction methods. This proposed approach could be a

useful tool in large-scale automated prediction of disulfide

connectivity patterns in protein sequences.

2 METHODS

2.1 Datasets

In the present study, in order to objectively compare our method with

other available approaches reported previously, we used the same

dataset that was originally developed by Fariselli and Casadio (2001).

This dataset was extracted from Swiss-Prot 39 release and contains only

intrachain disulfide bond annotations that were experimentally verified,

whereas the interchain disulfide bonds were not considered and

discarded. We selected the protein sequences with at least two and at

most five disulfide bonds for the sake of comparison. Every two

sequences in the dataset have the pairwise sequence identity 530%.

Another two datasets: SP39-template and SP43 are also used in this

study. The detailed description of these datasets is given in

Supplementary Table 1 available at our website.

We performed the 4-fold cross-validation test to evaluate our method

based on this non-homologous dataset. The whole dataset was

randomly divided into four subsets of roughly equal size. In each

validation step, one subset was selected for testing, while the rest were

used as the training dataset. The SP39 dataset as well as the SP39-

template and the SP43 dataset with detailed information about the

protein Swiss-Prot ID, disulfide connectivity annotation and amino

acid sequence have been made available as Supplementary Material at

http://foo.maths.uq.edu.au/�huber/disulfide.

2.2 Support vector regression

Support vector machine (SVM) is a widely used machine-learning

method based on Statistical Learning Theory and has found increas-

ingly important applications in many aspects of bioinformatics and

computational biology, such as microarray data analysis (Brown et al.,

2000), protein subcellular localization prediction (Hua and Sun, 2001;

Sarda et al., 2005), protein stability change prediction (Capriotti et al.,

2005), proline cis/trans isomerization prediction (Song et al., 2006),

protein fold recognition (Chen and Baldi, 2006), disease-associated

single point protein mutations (Capriotti et al., 2006) and protein–

protein interaction (Bradford and Westhead, 2005; Shen et al., 2007).

The concept of SVM was originally proposed by Vapnik and his

coworkers (Vapnik, 2000). The basic idea of SVM is to transform the

samples into a high-dimensional feature space and construct an

Optimal Separating Hyperplane (OSH) that maximizes its distance

from the closest training samples.

As one of SVM’s two practical modes (the other one is support vector

classification, SVC), SVR is a novel machine-learning method that is

receiving more and more attention and has been successfully applied in

the prediction tasks of protein B-factors (Yuan et al., 2005), residue

contact numbers (Ishida et al., 2006; Yuan, 2005), residue-wise contact

orders (Song and Burrage, 2006), missing value estimation in

microarray data (Wang et al., 2006), MHC peptide binding affinity

(Liu et al., 2006; Wan et al., 2006) and solvent accessibility of

transmembrane residues (Yuan et al., 2006).

The objective of the regression problem is to estimate an

unknown continuous-valued function y¼ f(x), which is based on a

finite number of samples. In the current study, we want to find the

relationship function between the protein sequence and disulfide

connectivity pattern. In order to achieve this, we use "-insensitive

support vector regression ("-SVR) (Vapnik, 2000). Let {(xi, yi)}

(i¼ 1, . . .,N) denote a set of training data, where the feature vector xi
denotes each cysteine–cysteine pair in a protein sequence with N

cysteine pairs, and yi represents its corresponding probability of

forming a disulfide bridge.

Thus, the expected function of SVR can be formulated as

fðxiÞ ¼ W,�ðxiÞ
� �

þ b, ð1Þ
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whereW is the weight defining the solution of the primal formulation, b is

the bias, � (xi) is a non-linear function mapping the input feature into a

higher dimensional space, and W,�ðxiÞ
� �

is the inner product of W and �

(xi). To estimate the function f (x), the optimization problem of SVR can

be transformed into the constrained convex optimization problem:

minimize
1

2
Wk k2þC

XM
i¼1

ð�i þ ��i Þ, ð2Þ

subject to

fðxiÞ � yi � "þ �i

yi � fðxiÞ � "þ ��i
�i,�

�
i � 0, i ¼ 1, . . . ,M,

8><
>:

ð3Þ

where C is the regularization parameter that determines the trade-off

between the margin and prediction error. Here, �i and ��i are two

positive slack variables used to measure the deviation of samples

outside the error tube.

To solve this optimization problem, two Lagrange multipliers were

added to the condition equations, and therefore the final regression

function can be formulated as

fðxÞ ¼
XM
i¼1

ð�i � ��i ÞKðxi,xÞ þ b, ð4Þ

where �i and a�i are Lagrange multipliers to be determined, and the

kernel function Kðxi,xÞ ¼ �ðxiÞ,�ðxÞ
� �

, which can take different forms

such as the linear kernel function, polynomial kernel function, radial

basis kernel function, sigmoid kernel function and a user-defined kernel

function. The support vectors are those with corresponding non-zero

values of the Lagrange multipliers.

We trained and constructed our SVR classifiers based on the Radial

Basis Function (RBF kernel), which is given by

Kðxi,xÞ ¼ expð��jjxi � xjj2Þ: ð5Þ

There are two parameters needed to be determined in advance to

optimize the SVR training. They are the regularization parameter C and

the kernel parameter �. The former is the cost parameter and the latter

determines the width of RBF kernel. The selection of the kernel function

parameters is an important step for SVR training and testing, as it

implicitly determines the structure of the high-dimensional feature space

when constructing the OSH. In the present study, we selected the RBF

kernel function at "¼ 0.01, �¼ 0.01 and C¼ 5.0 to build the SVRmodels.

This combination of parameters has been proven to yield the best

performance in our previous studies (Song and Burrage, 2006; Yuan,

2005; Yuan et al., 2005). For the implementation of Vapnik’s SVR

algorithm, we used the SVM_light (Joachims, 1999) software package.

2.3 Definition of disulfide connectivity pattern

The disulfide connectivity pattern denotes the connectivity arrangement

of the oxidized cysteine residue pairs involved in forming disulfide

bridges (Chuang et al., 2003; van Vlijmen et al., 2004). For example, a

protein with two disulfide bridges has three disulfide connectivity

patterns: 1-2_3-4, 1-3_2-4 and 1-4_2-3, where 1, 2, 3 and 4 correspond

to the sequential numbering of the disulfide-bonded cysteine residues in

a protein, ‘-’means there is a disulfide bond formed between these two

cysteine residues and ‘_’ is used to separate different disulfide bonds. To

further illustrate this definition, we highlighted a case protein with four

disulfide bonds as an example in Figure 1 (Swiss-Prot ID:

MAMB_DENJA in the SP39 dataset), whose disulfide connectivity

pattern is defined as 1-3_2-4_5-6_7-8.

For a protein with B disulfide bridges, the number of possible

disulfide connectivity patterns Nptn will be:

Nptn ¼
Y
i�B

ð2i� 1Þ ¼
ð2BÞ!

B!2B
: ð6Þ

For instance, a protein with four and five disulfide bridges would have

Nptn¼ 7�5�3�1¼ 105 and Nptn¼ 9�7�5�3�1¼ 945 disulfide con-

nectivity patterns, respectively. Thus, the number of disulfide con-

nectivity pattern will increase dramatically with the increasing number

of disulfide bonds in a protein sequence.

2.4 Sequence encoding schemes

Selecting appropriate sequence encoding schemes is an important step

as it determines the quality of feature extraction of SVR models and

thus has a significant meaning for the prediction performance.

2.4.1 Multiple sequence feature (MSF) vectors We employed

the multiple sequence feature vectors proposed by Chen and Hwang

(2005) as the input to our SVR models. They were composed of six

sequence feature descriptors: cysteine–cysteine coupling, 20 amino acid

compositions, cysteine separation distance, cysteine ordering, protein

molecular weight and protein sequence length.

Cysteine–cysteine coupling pair: this vector describes the local

sequential environments of two coupled cysteine residues. Numerous

previous studies have well established that evolutionary information

contained in multiple sequence alignments (MSAs) in the form of

position-specific scoring matrices (PSSMs) can significantly improve

the overall prediction performance (Ferre and Clote, 2005a,b; Rost and

Sander, 1993; Song and Burrage, 2006; Song et al., 2006; Yuan et al.,

2005, 2006). This idea was originally proposed and applied by Rost and

Sander (1993) in the secondary structure prediction. We ran a three-

iteration PSI-BLAST program against the NCBI non-redundant

database using a default E-value cutoff to obtain these PSSM profiles.

Each disulfide-bonded cysteine residue in a local sequence window

was encoded as a vector with 20 elements that represent the

probabilities of 20 amino acids occurring at this position. For a

cysteine pair forming disulfide connectivity, the PSSM profiles were

concatenated using their single cysteine profiles. In this study for all the

proteins with different numbers of disulfide bridges, we consistently set

up the local window size as 13, because this window size has been

demonstrated to lead to the best performance in previous works (Chen

et al., 2006; Tsai et al., 2005). Hence in summary, a cysteine–cysteine

coupling pair was encoded by a 2�13�20¼ 520-dimensional vector.

Amino acid compositions: these are 20-dimensional vectors and are

generally considered as a representation of global information of

protein sequence features. The amino acid compositions of the 20

amino acid types are calculated using the following equation:

AAi ¼

P20
i¼1

ni

L
ð7Þ

Fig. 1. Example of disulfide connectivity pattern and cysteine separa-

tion distance. The black line indicates that there is a disulfide bridge

formed between two corresponding cysteines.

Predicting disulfide connectivity

3149



where AAi is the percentage of residue type i and ni is the number of

residue type i occurring in a protein with sequence length L,

respectively. We used the notation A to denote this encoding scheme.

Cysteine separation distance: this is also denoted as DOC (sequence

Distance between Oxidized Cysteines) in the literature (Chen et al.,

2006; Tsai et al., 2005). DOC is defined as

DOCði, jÞ ¼ i� j
�� �� ð8Þ

where, i and j represent the two oxidized cysteines that form a disulfide

bridge. As indicated by Tsai et al. (2005), normalizing the DOC value

using the logarithm function can significantly improve the prediction

accuracy, when compared with other scaling methods based on either

protein sequence length or the maximum DOC value of the whole

dataset. Therefore, we also considered incorporating this normalized

vector into our SVR models. We used the symbol D to denote this

sequence encoding scheme.

Cysteine ordering: this vector describes the sequential order difference

between each cysteine pair and was originally suggested by Chen et al.

(2006). For instance, a protein with three disulfide bridges that are

formed between cys 21 and cys 42 (cysordering residues 1 and 4), cys 28

and 60 (cysordering residues 2 and 5), and cys 36 and 66 (cysordering

residues 3 and 6) will have the following cysorder: (1/6, 4/6, 2/6, 5/6, 3/

6, 6/6)¼ (0.1667, 0.6667, 0.3333, 0.8333, 0.5000, 1.000). We used the

notation O to denote this sequence encoding scheme.

Protein molecular weight (Proweight): our previous work demon-

strated that incorporating global features such as protein molecular

weight could yield better prediction performance (Song and Burrage,

2006). The normalized Proweight value is given by:

yi ¼
y0i � �y

SD
, ð9Þ

where yi is the normalized Proweight value of protein i, yi
0 is the raw

Proweight value of protein i, �y is the mean raw Proweight value

computed on the whole dataset and SD is the standard deviation based

on the whole dataset. The raw Proweight yi
0 can be calculated by

summing up all its residues using their individual residue molecular

weights in a protein i.

Protein sequence length (Prolength): similar to Proweight, the protein

sequence length is also a representation of global information of a

protein sequence. We encoded this vector into SVR models after the

normalization using their respective mean Prolength values and SDs

using Equation (9) based on the current dataset. We use L to denote this

sequence encoding scheme.

2.4.2 Incorporating predicted secondary structure
information We also take into consideration using the predicted

probability matrices of secondary structure states from PSIPRED

(Jones, 1999) to further enhance the prediction performance, whose

output provides the reliability indices for all the three secondary

structure states (helix, strand and coil) for each residue in a protein

sequence. In an earlier work, both the actual secondary structure

annotated by the DSSP program and the predicted secondary structure

information obtained by PSIPRED were originally introduced and

explored by Ferre and Clote (2005a,b) to infer disulfide connectivity

using neural networks. In other prediction studies, the predicted

secondary structure by PSIPRED has been proved to lead to a

considerable prediction improvement in predicting proline cis/trans

isomerization and residue-wise contact order in proteins (Song and

Burrage, 2006; Song et al., 2006).

In this study, we applied the PSIPRED algorithm against each

protein sequence in the three datasets in order to generate the

secondary structure prediction output files and we subsequently

extracted the M� 3 matrix from the output file of PSIPRED using

a sliding window scheme, where M is the target sequence length

centered at the disulfide-bonded cysteines (we adopted M¼ 13

in this study) and 3 is the number of secondary structure types.

Therefore, in total, a cysteine–cysteine pair was encoded by a

520þ 78þ 20þ 1þ 1þ 2þ 1¼ 623-dimensional vector.

2.5 Predicting disulfide connectivity patterns

In this study, we have reduced the problem of predicting disulfide

connectivity patterns to predicting the disulfide-bonding probability of

a cysteine–cysteine pair using SVR by combining their respective

sequence profiles with other sequence features. The architecture of our

SVR prediction framework is shown in Supplementary Figure 1.

The sequence input vectors of this system consist of seven parts: (1)

the PSI-BLAST profiles in the form of PSSMs; (2) the PSIPRED-

predicted secondary structure (shortened as PSS); (3) 20 amino acid

contents (AA); (4) the normalized protein sequence length (Prolength);

(5) the normalized protein molecular weight (Proweight); (6) Cysteine

ordering (Cysorder) and (7) the normalized cysteine separation distance

(DOC). In particular, we employed a sliding window method to extract

the PSI-BLAST profiles and PSIPRED profiles centered at the

disulfide-bonded cysteine residue and then formed a cysteine–cysteine

coupling pair to concatenate them. We then trained and tested our SVR

models based on different combinations of sequence encoding schemes.

As a final step, the prediction decisions are made by summing the

probabilities of all the possible disulfide connectivity patterns and

ranking them according to their respective scores. The disulfide

connectivity pattern that has the largest probability score will be

predicted as the result.

The prediction problem of disulfide connectivity can be solved

by drawing a maximum-weight matching graph whose nodes are

disulfide-bonded cysteines and whose edge weight is the potential

disulfide-bonding probability of the corresponding cysteine pair.

The disulfide connectivity pattern can be assigned and predicted by

finding the perfect matching using Edmond’s maximum weight matching

algorithm (Edmonds, 1965). This prediction strategy has been employed

by a number of previous studies in the literature (Cheng et al., 2006;

Fariselli and Casadio, 2001; Ferre and Clote, 2005a,b; Tsai et al., 2005).

We directly solved this difficult prediction problem without

exhaustively transforming it into a maximum weight matching problem.

On the other hand, by predicting the disulfide-bonding probability of

each cysteine pair and then ranking the probability score of every

possible disulfide connectivity pattern, our approach has another

important advantage over the pattern-wise prediction method, i.e. we

considerably reduced the imbalance problem that results from the high

positive/negative ratio when adopting the pattern-wise method.

2.6 Performance evaluation

In order to be consistent with the previous studies, we employed the

same two assessment measures Qc and Qp to evaluate the predictive

power of our classifiers (Chen and Hwang, 2005; Lu et al., 2007), on the

basis of cysteine pair and protein level, respectively.

Qc (the cysteine pair-based or disulfide bridge-based measure, i.e. the

fraction of correctly predicted disulfide bridges in a protein) is given by

Qc ¼
Nc

Tc
ð10Þ

where Nc is the number of disulfide bridges that are correctly predicted,

and Tc is the total number of disulfide bridges in the test dataset.

Qp (the protein-based measure, i.e. the fraction of proteins whose

disulfide connectivity patterns are all predicted correctly) is given by

Qp ¼
Np

Tp
ð11Þ

where Np is the number of proteins whose disulfide connectivity

patterns are correctly predicted, and Tp is the total number of proteins

in the test dataset.

The results obtained in this study were evaluated using a 4-fold cross-

validation procedure, i.e. the dataset was randomly divided into four

J.Song et al.
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groups, with each group containing roughly equal numbers of protein

sequences. Each group was singled out in turn as the testing dataset,

while the remaining proteins in other groups were used as the training

dataset.

3 RESULTS

3.1 Effects of different sequence encoding schemes

Unless otherwise stated, we refer to the sequence encoding
schemes in the following studies based on PSI-BLAST profile,

PSIPRED-predicted secondary structure, amino acid composi-
tion, protein molecular weight, protein sequence length, cysteine
ordering and cysteine separation with respect to the distance of
two oxidized cysteines, as ‘L’, ‘S’, ‘A’, ‘W’, ‘H’, ‘O’ and ‘D’,

respectively. We carried out an extensive investigation based on
eight different combinations of sequence encoding schemes in
order to evaluate their corresponding prediction performance.

The performance comparison of these eight different sequence
encoding schemes is presented in Table 1.

3.1.1 The benchmark prediction accuracy using local sequence
only in the form of PSI-BLAST profiles As can be seen from
Table 1, if using PSI-BLAST profiles only, our SVR classifier

based on MSAs alone could provide a benchmark overall
prediction accuracy of 70.4% and 75.1% that was evaluated by
Qp and Qc measures, respectively. This observation is consistent

with numerous previous prediction studies that PSI-BLAST
profiles in the form of PSSMs contain important evolutionary
information for accurately predicting disulfide connectivity

patterns (Chen and Hwang, 2005; Chen et al., 2006; Ferre and
Clote, 2005b; Lu et al., 2007).

3.1.2 Improved prediction by the predicted secondary
structure The SVR classifier based on the predicted secondary
structure information alone could provide a benchmark overall

prediction accuracy of 50.5% and 55.7% evaluated by Qp and
Qc measures, respectively. Furthermore, when combining ‘L’
and ‘S’ sequence encoding schemes, i.e. adopting ‘LþS’ scheme,
SVR could achieve an overall prediction accuracy of

Qp¼ 71.1% and Qc¼ 75.3%, respectively. In contrast, Ferre
and Clote (2005b) also developed a predictor based on a neural
network and secondary structure information by PSIPRED.

Their method achieved the best prediction accuracy

of Qp¼ 49%. Please note that this accuracy was achieved

based on a different dataset originally prepared by Vullo and

Frasconi (2004). However, both studies have indicated that

considering secondary structure information can lead to a

significant performance improvement, since statistical analyses

have revealed that there is a distinct bias in the secondary

structure preferences of disulfide-bonded and non-disulfide-

bonded cysteines (Ferre and Clote, 2005b). The improvement

on the prediction performance is a reflection of this preference.

3.1.3 DOC can significantly improve the prediction

performance The prediction accuracy of our SVR classifier
can be further improved by incorporating other informative

sequence features such as cysteine separation distance in terms

of the DOC value. This finding is consistent with the

observations from Tsai et al. (2005) and Chen et al. (2006),

who found that using a normalized DOC value has a significant

influence on the prediction performance improvement.

Furthermore, if using an ‘LþSþAþWþHþDþO’ sequence

encoding scheme, our method could reach an overall prediction

accuracy of Qp¼ 74.4% and Qc¼ 77.6%, respectively.
It is also worth noting that the inclusion of some global

sequence features with respect to amino acid composition and

cysteine ordering does not necessarily lead to performance

improvement in our studies. For example, compared with

Qc¼ 75.3% obtained using ‘LþS’ scheme, ‘LþSþA’ has a

decreased prediction accuracy of Qc¼ 75.2%. This is also the

case when we look at the prediction performance based on

‘LþSþAþWþHþDþO’ and ‘LþSþAþWþHþD’. Although

the former has more informative feature vectors, the latter has a

Qc accuracy higher by 0.3%.

3.2 Comparison with other approaches

Supplementary Table 2 shows the prediction comparison

with other disulfide connectivity approaches. Although this

comparison in some ways is misleading because some predic-

tion studies are performed on different datasets, our SVR

approach can provide at least comparable or much better

prediction accuracy compared with most of other prediction

algorithms. Moreover, for proteins with B¼ 2, our SVR

method provides an improvement of 0.8% higher in Qp and

Qc than any other method.

Table 1. Prediction accuracies in terms of Qp and Qc (%) based on different sequence encoding schemes

Sequence encoding schemes B¼ 2 B¼ 3 B¼ 4 B¼ 5 Overall

Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

L 80.8 80.8 63.0 70.3 76.8 83.3 44.5 62.2 70.4 75.1

S 71.2 71.2 37.0 49.1 52.6 61.2 17.8 37.8 50.5 55.7

LþS 81.4 81.4 63.0 69.8 78.8 84.6 44.5 61.2 71.1 75.3

LþSþA 81.4 81.4 63.0 69.8 78.8 84.6 44.5 60.4 71.1 75.2

LþSþAþWþH 80.8 80.8 63.7 71.2 78.8 84.6 44.5 61.2 71.1 75.6

LþSþAþWþHþO 78.8 78.8 63.0 70.1 78.8 84.6 44.5 61.0 70.2 74.8

LþSþAþWþHþDþO 85.9 85.9 67.1 72.8 79.8 84.8 46.8 62.7 74.4 77.6

LþSþAþWþHþD 86.5 86.5 67.1 72.6 78.8 84.8 46.8 64.0 74.4 77.9

This result was drawn based on the SP39 dataset using 4-fold cross-validation.
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In order to explore these issues further, we note that Lu and
colleagues have recently developed a computational method
that used a genetic algorithm (GA) to optimize the feature
selection process and obtained an overall prediction accuracy

73.9% using 4-fold validation on a non-homologous dataset of
482 sequences (Lu et al., 2007). This is a state-of-art prediction
performance up to date. Although the prediction performance

of the GA algorithm showed improvement over our approach
(in the case of B¼ 3, their results are 7.5% higher in Qp

accuracy and 7.1% higher in Qc accuracy than our method,

respectively. While in the case of B¼ 5, their results are 0.8%
higher in Qp accuracy and 7.4% higher in Qc accuracy,
respectively), our method provides at least a comparable or

competitive prediction performance when compared with other
prediction algorithms.
Moreover, to further validate our SVR approach, we

employed the more rigorous and objective independent hold-
out test adopted previously by Zhao et al. (2005) and Chen
et al. (2006) using the SP39-template as the training dataset and

the SP43 dataset as the independent testing dataset. The
sequences in these two datasets share sequence identity lower
than 30%. The prediction comparison results are shown in
Supplementary Table 3. The overall prediction accuracy (Qp) of

the SVR approach is 3% and 9% higher than the pair-wise
SVM and CSP methods, respectively, but 1% lower than the
two-level SVM method. Altogether, these results indicate that

the SVR approach provides at least a comparable prediction
performance in comparison with other methods, suggesting
that the SVR approach is a useful machine-learning method

and should be a powerful tool in accurately predicting disulfide
connectivity patterns by using appropriate multiple sequence
feature vectors.

3.3 Case study

For a better understanding of the significance of the Qc and Qp

measures used in this study, we highlighted four representative
cases as an elucidation, which can be seen from Figure 2A, B, C
and D, respectively. They are the heat-stable enterotoxinII
(Swiss-Prot ID: HSTI_ECOLI and PDB ID: 1EHS), plasma

retinol-binding protein (Swiss-Prot ID: RETB_PIG and PDB
ID: 1AQB), Lysozyme C (Swiss-Prot ID: LYC_MELGA and
PDB ID: 135L) and Type-2 ice-structuring protein (Swiss-Prot

ID: ANP_HEMAM and PDB ID: 135L).
In the first three cases, SVR based on the sequence

encoding scheme ‘L’ successfully predicted all of their actual

disulfide connectivity patterns. However, in the last case of the
type-2 ice-structuring protein, its disulfide connectivity pattern
was predicted as 1-10_2-3_4-6_5-8_7-9 by using the ‘L’

sequence encoding scheme. The first two disulfide bridges in
this protein are wrongly predicted as 1-10 and 2-3, respectively,
which is presented in light black in Figure 2D. However, after

adopting the ‘LþSþAþWþHþD’ scheme, the original pattern
1-2_3-10_4-6_5-8_7-9 is correctly predicted.

3.4 Prediction web server

We have implemented an online prediction web server
(available at http://foo.maths.uq.edu.au/�huber/disulfide) for
predicting disulfide connectivity patterns in proteins, which

employed the methodology used in this study. The web server

has an easy-to-use interface and accepts a single protein amino
acid sequence in the form of the one-letter FASTA format. In
addition, two SVR models are provided for users’ options that

are built based on the SP39 dataset and the SP39-template
dataset, respectively. After the prediction task for the query
sequence is accomplished, users will immediately receive a web

link by email that points to a temporary webpage containing
the prediction results.

4 DISCUSSION

Accurately predicting disulfide connectivity patterns could

provide important information towards the prediction of
protein structure. This study presented a prediction framework
that uses both multiple sequence feature vectors and PSIPRED-

predicted secondary structure information, aiming to provide
some deep insights into the sequence–structure relationship
between protein primary sequence and its disulfide connectivity

patterns. We believe that functionally conserved disulfide
connectivity patterns are encoded by protein sequence. We
have investigated the effects of different sequence encoding

schemes on the prediction performance of disulfide connectivity.
We have analyzed the extent to which disulfide connectivity
patterns can be correctly identified by using different knowledge

of sequence encoding schemes as the input to our SVR
approach. We find that of different sequence encoding schemes

to SVR predictors, the PSI-BLAST profiles in the form of
position-specific scoring matrices, the predicted secondary
structure using the PSIPRED program and the normalized

DOC value are three of the most important features that are
very likely to result in significant performance improvement.
Our approach presented here bears three key advantages

over current approaches that could account for the reported
prediction success in this study. First, we trained and tested our
SVR models using protein sequences as a whole dataset, instead

of training and testing them separately using the subgroups
with different disulfide bridges. This strategy is different from
most previous SVM-based studies that built their SVM

predictors by training them based on protein subgroups with
the same number of disulfide bridges (Chen and Hwang, 2005;
Lu et al., 2007). Therefore, for the relatively small numbers of

proteins with B¼ 4 and B¼ 5, our strategy makes them more
adequately represented and more adequately trained after input
into the SVR models. Second, the combination of all these three

sequence encoding schemes, i.e. multiple sequence vectors
especially in terms of DOC and predicted secondary structure

by PSIPRED can considerably improve the prediction perfor-
mance. This suggests that as expected, the inclusion of more
informative and complementary sequence features do have an

important impact on the prediction accuracy. However, it must
be pointed out that sequence features in terms of amino acid
composition and cysteine ordering in this study have no

significant effect on the prediction accuracy. The reasons for
this are not clear and need further investigation, but are beyond
the scope of this article. Third, our approach can greatly reduce

the imbalance problem by predicting the disulfide-bonding
probability of each cysteine pair and subsequently ranking the
probability score of every possible disulfide connectivity

pattern, thus avoiding the exhaustive transformation into a
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maximum weight matching problem. In addition, it takes 429

CPU seconds to predict and enumerate all the disulfide

connectivity patterns for the SP43 dataset with 313 proteins

using the SVR model built on the SP39-template dataset as the

training dataset.

Our prediction results have clearly demonstrated that the

proposed method can substantially improve disulfide connec-

tivity assignment accuracy, especially for those protein

sequences that are distantly related in terms of sequence

homology, and will be very useful in disulfide connectivity

annotation of previously uncharacterized sequences generated

by high-throughput large-scale genome sequencing projects.

However, it must be noted that for proteins with five

disulfide bridges, our SVR method did not perform well. One

possible reason for this is that the relatively small dataset

size makes it less likely to be represented when building

SVR models. Therefore, effort in effectively representing the

under-represented protein numbers should be of some assis-

tance. On the other hand, we believe that the mutual

information of coupled candidate cysteine residues in protein

sequence that contains conserved evolutionary information of
forming disulfide connectivity patterns has important effects on

the reliable assignment of disulfide connectivity. This should be

taken into consideration and be incorporated into the predic-

tion models when attempting to develop appropriate sequence-

based methods in the future.

5 CONCLUSION

In this article, we developed a novel approach based on SVR

that uses multiple sequence feature vectors and predicted

secondary structure by PSIPRED. In particular, we used SVR

to predict the disulfide-bonding probability with respect to each

cysteine–cysteine pair in a protein for the sake of ranking all

possible disulfide connectivity patterns, thus directly solving

this difficult prediction problem without transforming into a

maximum weight matching one. Our method achieved an

overall prediction accuracy of Qp¼ 74.4% and Qc¼ 77.9%,

Fig. 2. Four prediction examples of proteins with 2, 3, 4 and 5 disulfide bridges by using our SVR-based approach: (A) heat-stable enterotoxin II

(Swiss-Prot ID in the SP39 dataset: HSTI_ECOLI, and PDB ID: 1EHS) with disulfide connectivity pattern: 1-4_2-3; (B) plasma retinol-binding

protein (Swiss-Prot ID in the SP39 dataset: RETB_PIG, which was renamed to RETBP_PIG in release 46.1, and PDB ID: 1AQB) with disulfide

connectivity pattern: 1-5_2-6_3-4; (C) lysozyme C (Swiss-Prot ID in the SP39 dataset: LYC_MELGA, which was renamed to LYSC_PHACO in

release 46.1, and PDB ID: 135L) with disulfide connectivity pattern: 1-8_2-7_3-5_4-6 and (D) Type-2 ice-structuring protein (Swiss-Prot ID in the

SP39 dataset: ANP_HEMAM, which was renamed to LYSC_PHACO in release 46.1, and PDB ID: 135L) with disulfide connectivity pattern: 1-2_3-

10_4-6_5-8_7-9. Disulfide bridges are represented using ball-and-stick models and their corresponding disulfide-bonded cysteine positions are

denoted by numbers in gray. The correctly predicted disulfide bridges are shown in dark black, while the incorrectly predicted disulfide bonds are

presented in light black. These three-dimensional molecular images were rendered using UCSF Chimera package (Pettersen et al., 2004).
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respectively. This score was averaged on the proteins with two
to five disulfide bridges with the prediction performance
comparing favorably to other algorithms in the literature.

Our work provides a complementary method to the current
prediction algorithms used in computationally identifying

disulfide connectivity patterns in disulfide-rich proteins and is
a further step towards automatic annotation of protein

sequences generated by large-scale genome sequencing projects.
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