
Phosphoregulators: Protein Kinases
and Protein Phosphatases of Mouse
Alistair R.R. Forrest,1,2,3,9 Timothy Ravasi,1,2,4 Darrin Taylor,1,2,3 Thomas Huber,2,5

David A. Hume,1,2,3,4 RIKEN GER Group6 and GSL Members,7,8 and
Sean Grimmond1,2
1The Institute for Molecular Bioscience, 2University of Queensland, Queensland, Australia; 3The Australian Research
Council Special Research Centre for Functional and Applied Genomics, University of Queensland, Queensland, Australia;
4Cooperative Research Centre for Chronic Inflammatory Disease, 5Computational Biology and Bioinformatics Environment
ComBinE, 6Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama
Institute, Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan; 7Genome Science Laboratory, RIKEN,
Hirosawa, Wako, Saitama 351-0198, Japan

With the completion of the human and mouse genome sequences, the task now turns to identifying their
encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to
identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A
nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available
cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and
162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity
clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1)
distinguish between true members of the protein kinase and phosphatase families and enzymes of related
biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously
uncharacterized members. The classifications obtained by this approach were in good agreement with previous
schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on
the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2
transcriptome project.

[Supplemental material is available online at www.genome.org.]

Regulation of protein activity by reversible phosphorylation,
so-called phosphoregulation, is an important post-
translational control mechanism implicated in many areas of
biology. In this work, we use the term phosphoregulators to
refer to both the protein kinases and the protein phosphata-
ses. These enzymes regulate the phosphorylation status of the
protein complement of a cell, and in turn, regulate the activ-
ity of their target phosphoproteins in cellular processes. The
protein kinases covalently attach a phosphate group to a tar-
get, whereas the protein phosphatases remove these groups.
Defining the entire complement of these proteins in the
mouse gives us an opportunity to view the system as a whole.

The phosphorylation status of a protein, or more specifi-
cally, the pattern of phosphorylation on a given protein can
determine its activity. The presence or absence of a phosphate
group can change the conformation of the target protein,
thereby modifying its activity. Phospho motifs in some cases
provide binding sites for interactors, such as the 14-3-3’s
(Yaffe 2002). Alternatively, phosphorylation provides binding

sites for enzymes catalyzing secondary modifications, such as
further phosphorylation, dephosphorylation, acetylation
(HIPK2; Hofmann et al. 2002), or in the case of ubiquitin
ligases, facilitate ubiquitination and targeting of the protein
for proteolysis (Ding and Dale 2002).

Phosphorylation events often occur in a cascade, in
which activity of one kinase or phosphatase is dependent on
the upstream activity of another. One of the best-studied ex-
amples of this is the regulation of the mitogen activated pro-
tein kinase (MAPK)-signaling cascade. MAPK signaling has no
fewer than five levels of kinase regulation, MAP4K, MAP3K,
MAP2K, MAPK, and MAPKAPK (Larochelle and Suter 1995;
Cobb 1999; Dan et al. 2001) and one level of phosphatase
regulation (MKP) (Theodosiou and Ashworth 2002). Further-
more, there is considerable cross talk between signaling cas-
cades involving other phosphoregulators (Lehman and
Gomez-Cambronero 2002), resulting in a network of phos-
phoregulators rather than a linear cascade.

Phosphoregulation is implicated in many areas of biol-
ogy; these include transcriptional control (HIPK2; Hofmann
et al. 2002; Pierantoni et al. 2002), signal transduction
(MAPK; Cobb 1999), regulation of the cell cycle (Cyclin de-
pendent kinases, NIMA kinases, cdc25 phosphatases; Nigg
2001), immunoproliferation (CD45 phosphatase; Koretzky et
al. 1991), development (wnt signaling,�-catenin; casein ki-
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nase 1, glycogen synthase kinase-3; Ding and Dale 2002;
Hedgehog signaling, Cubitus interruptus, CK1, GSK-3, Protein
kinase A; Price and Kalderon 2002), apoptosis (casein kinase-
2; Ahmed et al. 2002), and targeted proteolysis (Li and Blow
2001; Ding and Dale 2002).

Spatially, phosphoregulators play specific roles through-
out the cell. Many cell surface markers are receptor kinases or
phosphatases. Examples include the ephrin receptor kinases,
TGF� receptor kinases and cd45 receptor phosphatase. There
are cytoplasmic kinases with affinity to the cytoskeleton, such
as the Microtubule affinity-regulating kinases that are in-
volved in microtubule dynamics (Drewes et al. 1997). There
are nuclear kinases such as the Homeodomain-interacting
protein kinases that are involved in transcriptional regulation
(Hofmann et al. 2002). Interestingly, there are some phospho-
regulators that shuttle dynamically between the cytoplasm
and the nucleus. The shuttling of cdc25 phosphatases (Dav-
ezac et al. 2000) and cyclin/cdk complexes (Toyoshima et al.
1998) is dependent upon the phase of the cell cycle or induc-
tion of a checkpoint, and is dependent upon phosphorylation
events.

Eukaryotic protein kinases fall into two major classes on
the basis of distinct substrate preferences as follows: (1) ser-
ine/threonine kinases, and (2) tyrosine kinases. Similarly eu-
karyotic protein phosphatases are classified as (1) serine/
threonine, (2) tyrosine, or (3) dual-specificity phosphatases.
Dual-specificity phosphatases are able to dephosphorylate ser-
ine, threonine, and tyrosine residues. Each of these classes has
well-conserved catalytic domains, and as such, these classes
are amenable to domain-based sequence mining. These pro-
teins are well represented within the InterPro database of pro-
tein-sequence domains (Apweiler et al. 2001; http://www.ebi.
ac.uk/interpro). InterPro contains 12 domain entries impli-
cated in protein-kinase activity and 10 domain entries asso-
ciated with protein-phosphatase activity (Table 1). In some
cases, these domains represent subclasses of more general do-
main predictions. For example, a protein kinase can contain a
eukaryotic protein kinase motif (IPR000719) as well as a tyro-
sine protein kinase motif (IPR001245). In other cases, the do-
mains represent distinct classes with distinct domain struc-
ture. For example, the low molecular weight phosphatase mo-
tif IPR000106 is unrelated to the tyrosine specific protein
phosphatase motif IPR000242.

Using the InterPro domains detailed in Table 1, we set
out to identify all potential protein kinases and protein phos-
phatases of mouse. To this end, we mined all publicly avail-
able cDNA sequences (including the FANTOM2 set) and the
Ensembl gene predictions. Once defined, the protein phos-
phatase and protein kinase complements were subjected to
clustering, and the resulting clusters examined for functional
groups and domain associations. An alternative approach to
traditional multiple alignment was adopted for clustering of
these two classes.

A recent development has been the release of a new pro-
tein sequence-similarity clustering tool known as TribeMCL
(Enright et al. 2002; http://www.ebi.ac.uk/research/cgg/tribe).
TribeMCL uses Markov clustering (MCL), an algorithm based
upon probability and graph flow theory (Van Dongen 2000)
to assign proteins to a given class. Distances are calculated on
BLASTP output. The BLASTP output is parsed by the Tribe part
of the package to produce a matrix of protein similarities
(BLASTP e-values), which is then subjected to Markov cluster-
ing. TribeMCL has been reported to handle problem se-
quences such as multidomain proteins and partial sequences

(Enright et al. 2002). It is a very fast algorithm, and as such, is
amenable to large data sets. It has been applied to the draft
human and mouse genomes with great success (Lander et al.
2001; http://www.ensembl.org) and forms the basis of the
Ensembl gene family assignments.

Markov clustering (MCL) can be thought of starting with
a matrix in which every protein node is interconnected by a
probability of transition (moving from one node to another).
Nodes that are highly related have a high probability of tran-
sition; nodes that are dissimilar have a low probability of tran-
sition. Starting at any given node, a random walk to another
node has a higher probability of moving within the same
natural cluster than between clusters. During iterative rounds
of expansion and inflation, terms specific to MCL, the strong
connections (those with a high probability of transition) are
strengthened, whereas weak connections are weakened fur-
ther. Inflation effectively severs flow between clusters,
whereas expansion dissipates flow within clusters (Enright
2002). Increasing the inflation value can increase the severity
of pruning, and hence, lead to higher granularity of clusters.
Over several rounds of expansion and inflation, the matrix
reaches a steady state, in which further expansion and infla-
tion have no effect, and clusters have effectively been iso-
lated.

Previous attempts to classify protein kinases have relied
on multiple sequence alignment followed by hierarchical tree
generation (Kostich et al. 2002). The assumption behind such
an approach is that there is conserved sequence between all
members to be classified. In the case of the protein kinases,
this is the catalytic region. The boundaries of the conserved
catalytic region must be determined and an optimal align-

Table 1. InterPro Domains Associated With Protein
Kinases and Phosphatases

Kinases

IPR000719 Eukaryotic protein kinase
IPR002290 Serine/Threonine protein kinase
IPR001245 Tyrosine protein kinase
IPR000961 Protein kinase C-terminal domain
IPR001426 Receptor tyrosine kinase class V
IPR002373 cAMP-dependent protein kinase
IPR001824 Receptor tyrosine kinase class III
IPR002011 Receptor tyrosine kinase class II
IPR002374 cGMP-dependent protein kinase
IPR003527 MAPK
IPR000239 GPCR kin
IPR002291 Phosphorylase kinase � catalytic subunit

Phosphatases

IPR000387 Tyrosine specific protein phosphatase and
dual specificity protein phosphatase family

IPR000340 Dual specificity protein phosphatase
IPR000934 Serine/threonine specific protein phosphatase
IPR001932 Protein phosphatase 2C domain
IPR000242 Tyrosine specific protein phosphatase
IPR003595 Protein tyrosine phosphatase, catalytic domain
IPR000222 Protein phosphatase 2C subfamily
IPR002115 Mammalian LMW phosphotyrosine protein

phosphatase
IPR000106 Low molecular weight phosphotyrosine protein

phosphatase
IPR000751 MPI_Phosphatase.
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ment produced. Decisions must be made on how much of the
alignment to use, how partial sequences will be handled, and
whether to include sequences that do not align well. Se-
quences that do not share conserved sequence cannot be
classified in this way. For example, the protein phosphatases
represent multiple classes with distinct evolutionary origins.
The tyrosine phosphatases use a different catalytic mecha-
nism to the serine threonine phosphatases (Kerk et al. 2002).
TribeMCL does not require or assume conserved sequence,
and as such, is amenable to this multiple class problem.

In this work, we report on the use of TribeMCL clustering
to classify the murine complement of phosphoregulators. We
also report on domains associated with each of the clusters.
Finally, we discuss the impact of the FANTOM2 transcriptome
data (FANTOM Consortium and the RIKEN GSC Genome Ex-
ploration Group 2002) on these two important classes of pro-
teins and the use of TribeMCL as a useful tool for dissecting
out distinct classes of proteins.

RESULTS AND DISCUSSION

Identification of Protein Kinases
and Protein Phosphatases in Mouse
We used the Sequence Retrieval System (Etzold and Argos
1993; http://srs.ebi.ac.uk) to query two public protein data-
bases, SWALL and IPI (International Protein Index). By use of
this tool, mouse sequences annotated as containing the ki-
nase and phosphatase InterPro domains detailed in Table 1
were extracted. The RIKEN FANTOM2 group produced a
nonredundant protein set (RPS), which combines public se-
quences with high-quality representative sequences from the
FANTOM2 data set. We again used InterPro domain annota-
tions to extract sequences from RPS3 (nonredundant repre-
sentative protein set 3, available from RIKEN, http://fantom2.
gsc.riken.go.jp). Additional partial RIKEN sequences ear-
marked as novel kinases or phosphatases during the MATRICS
curation phase, which failed to make it through to RPS3, were
also included.

Structure-based superfamily predictions (http://scop.
mrc-lmb.cam.ac.uk/scop, Structural classification of proteins
home page) are also available for the FANTOM2 data, how-
ever, the SCOP predictions for the kinases and phosphatases
are broader and less well defined than the InterPro predic-
tions. The SCOP PK-like (protein kinase-like) prediction en-
compasses many protein kinases, but it also includes many
related sequences that are not protein kinases. In this respect,
the SCOP predictions represent a superset of those identified
by InterPro. For this reason, the SCOP-based predictions were
not used for identifying the phosphoregulators.

Mapping of the Sequences to a Common Identifier
To identify transcripts from the same gene, the sequences
were mapped to a common identifier by use of a combination
of approaches (Fig. 1). The majority of sequence entries
within IPI contain a reference to an Ensembl gene identifier.
They also contain cross-references to the original peptide se-
quences within SWISS-PROT, TrEMBL, and REFSEQ. Similarly,
for the RPS and SWALL entries, there are references to the
original peptide entries. Mappings to an MGD locus (Blake et
al. 2002, http://www.informatics.jax.org/) are also provided
for some RPS and IPI entries. In cases in which entries from
the different data sources shared original sequence entries,

they inherited the Ensembl gene identifier and MGD locus.
Sequences that could not be directly assigned to an Ensembl
gene had their respective cDNA sequences extracted. These
cDNA sequences were then compared with the Ensembl gene
cDNA sequences (available for download at http://
www.ensembl.org/Mus_musculus) using BLASTN. These
alignments were inspected manually. Those with significant
hits were assigned the respective Ensembl gene identifier. The
remaining sequences were compared with the Ensembl Gen-
scan predictions (available in the same directory). Significant
hits were assigned the Genscan locus. Finally, any remaining
sequences were assigned the MGD locus (if available) or the
EST accession number from which they came. The gold stan-
dard for mapping such a group of sequences would be to map
them to a genomic location with a given orientation. We
provide genomic positions for the majority of the sequences,
however, eight of the kinase-related sequences could not be
mapped.

By use of our mock locus approach with a preference for
Ensembl gene identifiers, it was possible to consider all se-
quences. This made it simple to compare genomic predictions
with transcript data. In Supplementary Tables 1 and 2, we
provide extensive cross-referencing for all genes identified.
Where possible, we provide representative IPI, RPS3 (and
RPS6.3), SWALL, RIKEN, Ensembl, and MGD identifiers. We
also provide a representative accession number and genomic
position.

Nonredundant Sets of Protein Kinases
and Protein Phosphatases
By use of the mock locus assigned in the previous step, the
data sets were cross-referenced. For cluster analysis, the com-
bined data set was sorted by mock locus, and the longest
representative sequence taken. Intermeshing the predictions
from the various protein sets resulted in an estimated 561
candidate protein kinases and 162 candidate protein phos-
phatases. It is worth noting that only 11 kinase-related se-
quences and 1 phosphatase sequence failed to map to an En-
sembl locus or Genscan prediction.

A total of 541 of the candidate protein kinase sequences
mapped to an Ensembl gene, 77 of these are predictions by
Ensembl with no supporting transcript evidence in mouse. Of
the remaining sequences, nine mapped to Genscan predic-
tions, six were assigned to MGD loci, and the remaining five
were labeled with their respective accession numbers.

Similarly, 158 of the candidate protein phosphatase se-
quences mapped to an Ensembl gene, 19 of these are predic-
tions by Ensembl with no supporting evidence in mouse. A
further three mapped to Genscan predictions, and the re-
maining one was assigned to an MGD locus.

Considering only those sequences with transcript evi-
dence, 104 of the 484 candidate kinases were only supported
by RIKEN evidence. This represents a significant proportion of
kinases confirmed by transcript (21.5%). Similarly, for the
candidate protein phosphatases, 27 of the 143 were only rep-
resented by RIKEN (18.9%). These sequences are novel tran-
scripts in the respect that they are the only publicly available
transcript evidence for these genes. However, the term novel
may be inappropriate, as some of these sequences have been
public since the first phase of the FANTOM project (The
RIKEN Genome Exploration Research Group Phase II Team
and the FANTOM Consortium 2001). To clarify the terminol-
ogy, we will use the term novel transcripts to refer to genes
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Figure 1 Pipeline for identifying protein kinase and protein phosphatase containing sequences.
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in which there is no obvious homolog and for which the
FANTOM sequences are the only source of transcript evi-
dence. The term homolog is used to identify sequences in
which there is an easily identifiable homolog, and for which
FANTOM sequences are the only source of transcript evi-
dence. Additionally, there are uncharacterized sequences
from other sources, but for the purpose of this analysis, these
are considered known.

Clustering of the Nonredundant Kinase
and Phosphatase Sets
TribeMCL-based clustering tended to separate the data sets
into a few large clusters and many smaller ones. The number
and size of clusters (i.e., the granularity of the clustering)
could be adjusted by changing the inflation value used within
TribeMCL or by using different expectation value (e-value) cut
off values during the BLASTP step. The inflation value (a value
between 1 and 5, default of 3) is used during the iterative
expansion and inflation steps of TribeMCL, the higher the
value the more granular the result. Adjustment of the e-value
is not recommended by the authors of the TribeMCL package,
however, adjusting the inflation value alone did not provide
sufficient granularity. Decreasing the granularity led to
smaller distinct clusters being split and merged with multiple
large clusters rather than all members of a given smaller clus-
ter going to a given larger cluster. We experimented with dif-
ferent combinations of e-value cutoff and inflation value
(data not shown), and in the final data presented here, we use
an expectation value of e-10 and an inflation value of 5. Using
an e-value restriction of e-10 effectively sets the probability of
transition to zero for any pair of nodes in which the e-value
was higher than e-10 (i.e., those sequence comparisons with
low BLAST scores). These settings tended to generate a large
number of smaller clusters, which may indicate fragmenta-
tion of larger clusters. It was decided it was better for these to
be assigned their own class rather than risk splitting them
inappropriately between the larger clusters. These settings
also separated smaller classes with distinct biology such as the
guanylyl cyclases, TGF-�-type receptor kinases, and myotubu-
larins (Tables 2 and 3).

Cluster Analysis of Protein Kinases
Two major kinase clusters were identified, a serine/threonine
kinase cluster containing 289 members, with 63 previously
uncharacterized transcripts, and a tyrosine kinase cluster con-
taining 123 members, with 11 previously uncharacterized
transcripts. The remaining 149 sequences, of which 37 were
uncharacterized previously, were split into 59 smaller clusters,
including 30 singletons (Table 2). A number of these smaller
clusters represent kinases and kinase-like proteins with spe-
cialized biology and domain architecture; these include a
TGF-B receptor kinase cluster containing 13 members, 2 of
which were uncharacterized previously (cluster 2.0), a casein
kinase-1 cluster with 12 members and 4 previously uncharac-
terized transcripts (cluster 3.0), and a guanylyl cyclase cluster
with 8 members and 2 previously uncharacterized transcripts
(cluster 5.0).

To further segment the large serine/threonine kinase and
tyrosine kinase clusters, we used CLUSTALV (Higgins et al.
1992) to produce multiple alignments, and then used the
alignments to create neighbor-joining trees with 1000 boot-
straps. The larger branches from these trees were then used to
subclass these two major kinase classes. (To view where sub-

classes were derived from, please refer to the trees in Supple-
mentary Figs. 1–4). The serine/threonine group split into five
major subclusters, as did the tyrosine kinases. These subclus-
ters could be split further into subfamilies that share a con-
served set of domains and represent known kinase families
(Table 2).

We took two of these subclusters as examples to demon-
strate the clusters and their domain associations. We consid-
ered cluster 0.0, the first subcluster of the serine threonine
group and cluster 1.3 of the tyrosine kinases (Table 2).

Within cluster 0.0, there are nine subfamilies, six of
which appear to have domains that define them. The nine
subfamilies are the ribosomal s6 kinases, the protein kinase
C’s, a rho/myotonin group, an unknown group, the G protein
coupled receptor kinases, the serum glucocorticoid kinases,
the RAC/AKT kinases, the cyclic nucleotide dependent kinases
(cNMP; cAMP, and cGMP dependent), and the aurora-related
kinases. The PKC sequences share a PKC domain (IPR002219),
a C2 domain (IPR000008), and a PKN domain (IPR000861).
The Rho/myotonin group is defined by a PKC domain, Pleck-
strin-like domain (IPR001849), and citron-like domain
(IPR001180), a subset of the unknown1k group contains PDZ
domains. The RAC group contains a pleckstrin-like domain,
and finally, the cNMP-dependent group contains a cNMP-
binding domain (IPR000595). For domain predictions on in-
dividual sequences, please refer to Supplementary Table 4,
which shows the clusters and all of the InterPro domains
found within each of the sequences.

Within the 1.3 cluster of the tyrosine kinases, there are
four subfamiles, the ephrin receptors, the Janus kinases (JAK),
the focal adhesion kinases (FAK), and a less-well defined
group (EPH-like). The ephrin receptors are characterized by
four InterPro motifs, these are ephrin (IPR001090), SAM—
Sterile Alpha Male (IPR001660), FIII—Fibronectin type III re-
peats (IPR003961, IPR003962), and RTK-V—receptor-type ki-
nase-V motifs (IPR001426). The EPH-like group consists of six
members, two of which share the ephrin and RTK-V motifs of
the ephrins, but lack the FIII or SAM domains. The Janus
kinase group is defined by an SH2 (IPR000980) motif and a
Band4.1 motif (IPR000299), and finally, the focal adhesion
group contains a Band4.1 motif and a focal-adhesion target-
ing region (IPR005189) (Table 2).

Cluster Analysis of Phosphatases
As with the kinases, the phosphatase sequences produced 2
major clusters and 40 smaller clusters that included 19 single-
tons. The largest was a Tyrosine phosphatase cluster contain-
ing 42 members, 2 of which were novel transcripts; the next
largest was a Dual specificity phosphatase cluster containing
25 members with 7 novel transcripts. The remaining 64 phos-
phatases contained 19 novel transcripts. The smaller classes
include nine myotubularins, nine serine/threonine phospha-
tases, nine protein phosphatase 2Cs (two novel transcripts),
and five protein tyrosine phosphatase 4a/MPRL (prenylated
phosphatases) (Table 3).

Domain Associations Within the Kinases
and Phosphatases
All sequences in this study had their corresponding InterPro
domain annotations extracted. Supplementary Tables 3 and 4
provide extensive domain information and cluster ID for ev-
ery sequence in this study. Tables 2 and 3 summarize the most
common domain associations for each of the clusters.
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Table 2. Summary of Protein Kinase Domain Containing Clusters Identified by TribeMCL

cluster
ID riken total branch

cluster or
branch description

Hanks’
classification

domain
associations

Serine/ 0.0 10 66 SGK serum glucocorticoid kinase AGC-OTHER
Threonine Ribos6 Ribosomal S6 kinase AGC-VI
Kinases RAC RAC AGC-III Pleckstrin like
(289) PKC Protein kinase-C AGC-II PKC, C2 domain,

PKN
cNMP cAMP/cGMP dependent PKs AGC-I cNMP binding
Rho/myotonin Rho/myotonin AGC-VII PKC, Pleckstrin,

citron
unknown1k AGC-OTHER PDZ
aurora aurora-related OPK-I
GPCR G protein coupled receptor kinase AGC-IV regulator of G

protein, GPCR
kin

0.1 25 94 death assoc death associated kinases CAMK-I
CAMKII calcium/calmodulin-dependent

kinase type II
CAMK-I

CAMKI calcium/calmodulin-independent
kinase type I

CAMK-I

unknown2k snf1/ELKL/ink76/st22 CAMK-II UBQ assoc,
kinassoc c-term

unknown3k pim OPK-OTHER UBQ assoc
MAPKAPK mitogen activated protein kinase

activated protein kinase
CAMK-OTHER

PKD/ULK AGC-II/OPK-V
0.2 13 72 unknown4k tousled, misc OPK-VII/CAMK-1

MAPK mitogen activated protein kinase CMGC-II mapk
CDK cyclin dependent kinases CMGC-I
GSK, CKII glycogen synthase kinase, casein

kinase II
CMGC-OTHER/III/IV

apop MAP3K apoptosis regulating MAP3 kinase OPK-IV
0.3 1 5 unknown5k OPK-OTHER
0.4 13 52 polo polo like kinases OPK_I polo box

MAP3K mitogen activated protein kinase
kinase kinase

OPK-IV

NEK NIMA expressed related kinases OPK-V
DUSP/MAP2K dual specificity mitogen activated

protein kinase kinases
OPK_II

PAK/GCK p21 activated kinases, Germinal
center kinases

OPK-III PAK, citron

PAK p21 activated kinases OPK-III PAK
MAP4K mitogen activated protein 4K OPK-III citron
unknown6k ste20 related? OPK-III
unknown7k ste20 related? OPK-III
unknown8k ste20 related? OPK-III

Tyrosine 1.0 0 8 EGF/UFO/c-met EGF/UFO/c-met receptor kinases PTK-OTHER/XXI/X/XII lg, Fibronectin III
Kinases 1.1 7 50 unknown9k CAMK-I
(123) RIPK Receptor interacting PK Ankyrin

MAP3K/MLK mitogen activated protein 3K,
Mixed lineage kinase

OPK-XI SH3

unknown10k
TIE tunica interna endothelial cell

kinase
PTK-XIII/XVIII Fibronectin III, EGF

like
LIMK lim motif containing kinases
RAF RAF OPK-VIII PKC
GFR VEGFR, FGFR, PDGF PTK-OTHER/XIV IG various, RTKII

1.2 0 27 unknown11k SRC related PTK-III/IV SH2, SH3
SRC SRC proto-onco PTK-I SH2, SH3
TEC/BTK Bruton’s tyrosine kinase PTK-II/V SH2, SH3,

pleckstrin like,
Tec/BTK

leukocyte PTK-XVII RTKII
insulin recep insulin receptor and related kinases PTK-XVI RTKII, EGFR-L,

furin, fiblll
1.3 3 28 eph like PTK-VIII eph, RTK-V

eph receptors ephrin-type a and B receptors PTK-XI eph, SAM, FIII,
RTK-V

(continued)
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A number of InterPro domains were associated with the
eukaryotic kinases. Excluding the kinase domains used to
identify these sequences, the next most common InterPro do-
mains were SH2 (IPR000980), Immunoglobulin/MHC
(IPR001452), SH3 (IPR001452), and Fibronectin, type-III re-
peats (IPR003961). These fall into two major categories, re-
ceptor-type domains and nonreceptor-type domains. Addi-
tional receptor-type domains observed and associated with
specific groups were the various classes of immunoglobulin-
like domains, receptor-type kinase domains, and the ephrin
receptor-associated domains. The nonreceptor group appears
to be enriched for interaction domains, most notably the SH2,
SH3, PDZ (IPR001478), and pleckstrin-like domains
(IPR001849), as well as citron (IPR001180) and ubiquitin-
associated domains (IPR000449).

Similarly, within the phosphatases, two major groups
could be identified. The most common domains associated
with the phosphatases were the Fibronectin type-III repeats
( IPR003961/ IPR003962) , Rhodanese - l ike domain
(IPR001763), immunoglobulin-type domains (IPR003006/
IPR003599/IPR003598), Band 4.1 (IPR000299), MAM
(IPR000998), and GRAM domains (IPR004182). The FIII, Ig,
and MAM domains were all associated with Receptor phos-
phatases. The Rhodanese-like domain is found in cdc25 phos-
phatases (m-phase inducing phosphatases) and a subset of the
Dual specificity phosphatases, the MAPK phosphatases. The
Band4.1 motif is associated with cytoskeletal interactors and
the GRAM domain is known to occur in myotubularins (In-
terPro at EBI; http://www.ebi.ac.uk/InterPro/).

Misclassifications and Related Gene Families Detected
by TribeMCL
Perhaps the greatest issue when using domain-based predic-
tion is the identification of false positives. We encountered a

number of nonphosphatase and nonkinase proteins that con-
tained kinase or phosphatase InterPro domains. Within
TribeMCL, these sequences clustered separately as small dis-
tinct clusters.

Proteins that catalyze very similar reactions to protein
phosphatases, such as the PIP3 phosphatases, the myotubu-
larins (cluster 2), and the PTEN-related genes (cluster 6) (Tay-
lor et al. 2000, Maehama et al. 2001), represent one class of
misclassification. Similarly, more distantly related enzymes,
such as the mRNA-capping enzymes, mRNA 5�-triphos-
phatases (cluster 9) (Changela et al. 2001), acid sphingomy-
elinase-like phosphodiesterases (cluster 8) (Testi 1996), RNA
lariat debranching enzyme (Kim et al. 2000), CD73-5’ nucleo-
tidase (Airas et al. 1997), and MRE11A (Hopfner et al. 2001)
were all identified as containing protein phosphatase do-
mains. Within the protein kinases, the guanylyl cyclases were
also identified (cluster 5) (Lucas et al. 2000).

With the recognition that the data sets contained pro-
tein kinase-like and protein phosphatase-like sequences, we
divided the data sets into two classes of trust. Clusters are
labeled as protein kinase/phosphatase or protein kinase/
phosphatase like. Clusters containing member sequences
with direct evidence of protein kinase or protein phosphatase
activity within the literature and no conflicting reports (as
with the myotubularins) were labeled as protein-kinase or
protein-phosphatase sequences. Clusters containing se-
quences in which the literature suggested that they had an-
other role were labeled as protein kinase/phosphatase like.
Clusters in which there was no evidence were considered ki-
nase/phosphatase like for downstream analysis purposes. The
trust assignments for each sequence cluster are available in
supplementary Tables 1–4.

With these new definitions in place, the data sets split
into 109 protein phosphatase, 53 protein phosphatase-like,

Table 2. Continued

cluster
ID riken total branch

cluster or
branch description

Hanks’
classification

domain
associations

JAK Janus kinase PTK-VII/VI SH2, Band4.1
FAK focal adhesion kinase PTK-IX Band4.1,

focaladhesion
1.4 1 10 unknown12k PTK-XIX/XX lg, Frizzled, RTK-II

Other
small
classes

2.0 1 13 TGF-B recep TGF-B, activin, BMP OPK-IX TGF-B R, TGF-b GS
motif, Activin
type II

3.0 3 12 CK1 casein kinase 1 OPK-XII
4.0 1 12 CLK cdc-like kinase CMGC-V
5.0 2 8 GC guanylyl cyclase GC, extracellual

ligand binding
recep

6.0 1 7 cdk4/6 cyclin dep kin 4 and 6 CMGC-I
7.0 1 5 cdc2-like cdc2-like CMGC-I
8.0 3 5 IRAK IL-1 receptor associated OPK-X
9.0 1 4 WNK PK, lysine deficient OPK-IV
10 1 4 cdk-like cdk-like kinases CMGC-I
11 1 3 GAK cyclin G associated kinase

undefined 16 76 undefined cluster <3 members

TOTAL 104 561

Cluster ID refers to clusters identified by TribeMCL and CLUSTALV branches. Hanks’ kinase class is provided to demonstrate overall agreement
between the clustering (Hanks and Quinn 1991). Clusters labeled as unknown represent clusters in which a common underlying biology could
not be identified readily for a given cluster.
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502 protein kinase, and 59 kinase-like sequences. When con-
sidering sequences for which transcripts have been detected,
13 of the 96 protein-phosphatase sequences and 87 of the 435
protein-kinase sequences are only supported by RIKEN tran-
scripts; these represent 13.5% of all protein phosphatases and
20% of all protein kinases detected in the mouse transcrip-
tome. Also, within the protein-kinase-like and protein-
phosphatase-like groups, RIKEN transcripts were responsible
for 34.7% and 29.8% of these sequences, respectively.

Evaluation of TribeMCL
Examining the clusters obtained by TribeMCL, we observed a
number of smaller clusters that seem to have been split from
the larger clusters. The cyclin-dependent kinases CDK4 and
CDK6 (cluster 6.0) cluster away from the remaining CDKs
(subcluster 0.2); whether this represents the true situation is
debatable. Similarly, a number of the smaller phosphatase
clusters (clusters 10.0 and 11.0) seem to represent proteins
with similar domains to larger clusters. There are two Protein
phosphatase 2c-type clusters (4.0 and 11.0) and two serine/
threonine-type clusters (3.0 and 10.0) (Table 3).

This suggests that the granularity settings used in our
analysis may have been set too fine. However, this level of
granularity has been important in separating misclassifica-
tions from genuine hits (see previous section). Sequences

placed within the smaller clusters or classified as singletons
represent small classes with distinct biology.

Comparison to Ensembl
As mentioned previously, we identified 561 protein kinase
and 162 protein phosphatase, related sequences. A total of
541 of the protein kinase-related sequences and 158 of the
phosphatase-related sequences mapped to Ensembl genes. A
total of 77 of the Ensembl kinase-related genes are only rep-
resented by a genomic prediction. Conversely, 20 kinase-
related sequences did not map to Ensembl genes. This indi-
cates an advantage in using a transcriptome-based screen, it is
not dependent upon gene predictions. As to whether the 77
Ensembl predictions represent true genes, we will have to wait
for transcriptome data to confirm their expression. A list of
the sequences that failed to map to an Ensembl gene is avail-
able as Supplementary Table 5.

Comparison to Previously Published
Classification Schemes
The clustering used in this work, on the basis of whole protein
homology, presents an alternative to traditional domain-
based homology assignments. A recent global analysis of the
human members of the protein-kinase superfamily identified

Table 3. Summary of Protein Phosphatase Domain Containing Clusters Identified by TribeMCL

Cluster
ID rik all branch

branch or
cluster description

domain
associations

Tyrosine
phosphatase

0.0 0 15 recep 1 Receptor tyrosine phosphatases—
group 1

lg, F-III, MAM, tyro catalytic region

(40) 0.1 1 5 recep 2 Receptor tyrosine
phosphatases—group 2

0.2 1 7 recep 3 Receptor tyrosine
phosphatases—group 3

F-III, tyro catalytic region

0.3 0 7 non-recep 1 Non-receptor tyrosine
phosphatases—group 1

band4.1

0.4 0 8 non-recep 2 Non-receptor tyrosine
phosphatases—group 2

DUSP (25) 1.0 2 7 DUSP DUSP DUSP
1.1 3 13 MKP MAPK phosphatase DUSP, Rhodanese like
1.2 0 5 T-DSP DUSP

PIP3 (9) 2.0 0 9 myotubularin myotubularin PIP3 phosphatase tyro/dusp/gram
Ser/Thr (9) 3.0 0 9 ser/thr Ser/thr phos Ser/thr phos,

metallo-phosphoesterase
PP2c (9) 4.0 2 9 PP2c Protein phosphatase 2c PP2c

5.0 0 5 4a/MPRL phos 4a and prenylated prenyl group binding site
6.0 1 4 PTEN like PTEN PIP3 phosphatase
7.0 3 4 cdc14 cdc14 tyrosine phosphatases
8.0 0 3 sphingo Acid Sphingomyelinase-like

phosphodiesterase
Ser/thr phos,
metallo-phosphoesterase

9.0 0 3 mRNA capping mRNA capping enzyme Tyr phos and DUSP
10 0 3 ser/thr 2B ser/thr 2B phoshatase Ser/thr phos,

metallo-phosphoesterase
11 2 3 unknown pp2c pp2c-like
12 0 3 cdc25/MPI cdc25 phosphatase/M-phase

inducer phosphatase
M-phase inducer, rhodanese like

undefined 12 40 undefined clusters <3 members

TOTAL 27 162

Cluster ID refers to clusters identified by TribeMCL and CLUSTALV branches.
Cluster 11 is labeled as unknown pp2C, members contain a pp2C domain but no common underlying biology could be identified for this
cluster.
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510 candidate kinase sequences (Kostich et al. 2002), we iden-
tified a similar number of sequences, 502 protein kinases, and
59 kinase-like sequences. The study by Kostich et al. (2002), as
does most other analyses, uses phenograms constructed using
the catalytic domain of the kinase for the alignment and tree
assignments. This approach captures relations dependent on
the catalytic domain, however, it ignores the effect of other
domains that may be important for the biology of the whole
protein. Perhaps surprisingly, we obtained similar classifica-
tions to those obtained by Kostich et al. (2002) and the earlier
Hanks’ classification scheme (Hanks and Quinn 1991; Protein
Kinase Resource http://pkr.sdsc.edu/html/pk_classification/
pk_catalytic/pk_hanks_class.html).

The most notable difference was the splitting of the cy-
clin-dependent kinases. Both the Hanks’ scheme and that of
Kostich et al. (2002) place the CDKs together, however, the
TribeMCL clustering separated the major CDK group (placed
within cluster 0.2 of the serine threonine kinases) from three
smaller CDK-related clusters (clusters 6.0, 7.0, and 10.0). The
reasons for this difference are not clear, however, the other
small TribeMCL clusters (2, 3, 5, 8, 9, and 11) represent pro-
teins with specialized roles (Table 2). The fragmentation of
the CDKs may reflect an underlying difference in their biol-
ogy, however, an artefact of the clustering cannot be ruled
out. These clusters contain a large number of genomic predic-
tions. In cluster 6.0, four of the seven genes are predicted.
Similarly, in cluster 7.0, three of five genes are predicted. In
both cases, these are predicted genes from the Ensembl family
ENSMUSF00000000078. Whether these predictions are some-
how skewing the clusters is unknown.

For the mammalian protein phosphatases, a similarly
comprehensive classification scheme is not available. A recent
whole-genome analysis on the protein phosphatase catalytic
subunits of Arabidopsis identified 112 candidate phosphatase
sequences (Kerk et al. 2002); these were split into 69 pp2c, 18
DUSP, 23 serine/threonine, 1 tyrosine, and 1 low molecular
weight tyrosine phosphatase. The small number of tyrosine
phosphatases in Arabidopsis does not reflect the situation in
mouse in which the tyrosine phosphatases represent the larg-
est class of phosphatases. To assess the quality of the cluster-
ing for the tyrosine phosphatase clusters, we compared them
with those identified by Andersen et al. (2001) (http://science.
novonordisk.com/PTP/database.asp). There was good overall
agreement with clusters separating into receptor type and
nonreceptor type phosphatases, however, both cluster 0.2
and 0.4 contained both receptor and nonreceptor-type mem-
bers.

Novel Phosphoregulators Within
the FANTOM2 Libraries
To assess the impact of the RIKEN FANTOM2 sequences, we
only considered those for which the FANTOM sequence was
the only source of a predicted peptide. Many of the other
sequences presented here are also identified by RIKEN, but
there is supporting evidence from another source. Some of
these are also novel sequences, however, for the purpose of
simplifying this assessment, these are considered as separate.

Starting with the phosphatase domain-containing se-
quences, we identified 8 homologs and 19 novel transcripts
(Table 3). Novel transcripts for one MAPK phosphatase and
two HSSH/slingshot-related dual-specificity phosphatases
were identified in cluster 1. A transcript for a novel pp2c type

phosphatase was identified in cluster 4. We also identified
three smaller phosphatase-like clusters containing novel tran-
scripts.

Cluster 6 contains PTEN (phosphatase and tensin)-like
proteins. PTEN is an important PIP3 phosphatase. The cluster
contained PTEN and an additional three proteins, one predic-
tion for a cyclin G-associated kinase (human GAK has a tensin
and phosphotyrosine motif—O14976), one known, anno-
tated as tyrosine phosphatase and one novel transcript with
tensin homology. As to whether these constitute members of
the PTEN family is not clear.

Cluster 7 contains four cdc14 protein tyrosine phospha-
tase sequences, one of these is a predicted gene by Ensembl,
one is a homolog of a human gene, and two are novel tran-
scripts. Cluster 11 contains three sequences of unknown func-
tion, they all contain a protein phosphatase-2C motif, they
cluster separately from the pp2c phosphatase cluster 4 and
separately from the structurally similar pp2c-like, pyruvate
dehydrogenase phosphatase cluster 17. The remaining novel
transcripts include a protein that clusters with the ecto-5�

nucleotidase, CD73 (cluster 15), and two transcripts with
similarity to dual-specificity phosphatase DUSP13.

Within the serine/threonine kinase cluster, there were 62
RIKEN-only sequences, 28 of these are completely novel tran-
scripts. These novel transcripts include a doublecortin do-
main-containing kinase, SNF1-related kinases, calcium/
calmodulin-dependent kinases, MAPK-activated protein ki-
nases (cluster 0.1), nima-related kinases, and p21-activated
kinases (cluster 0.4). Within the tyrosine kinase cluster, there
were 11 RIKEN only sequences, 6 of which are novel tran-
scripts, including an ephrin-like kinase (cluster 1.3).

Within the remaining sequences, there were a number of
clusters containing homologs and novel transcripts. Clusters
and novel transcripts of note include a casein-kinase 1 cluster
(3), containing 12 CK1-related sequences; we identified three
homologs not observed previously in mouse, a novel kinase
related to EIF-2 � kinase (cluster 20), and an Il-1 receptor-
associated kinase (IRAK) cluster (8) containing a hypothetical
predicted by Ensembl, two novels, a homolog, and a known.

Mouse Phosphoregulators
An advantage of examining both the protein kinases and pro-
tein phosphatases of mouse was to glimpse a global view of
how these enzymes, which catalyze opposing reactions, could
operate throughout the cell and how they are used in so many
control systems. The most obvious observation was the high
number of kinases in comparison to phosphatases. This is also
the case in other eukaryotes, including yeast and man. A
number of workers have commented on this previously, with
the suggestion that protein kinases have higher specificities
than protein phosphatases, however, this has been chal-
lenged (Zhang et al. 2002). There is clear evidence of substrate
specificity by some phosphatases; consider the MKPs (map
kinase phosphatases), which are specific for MAP kinases, and
the cdc25 phosphatases specific to cyclin/CDK complexes.

The simplest explanation for this observation, however,
is that a phosphatase is only required in systems in which the
target protein needs to return to an unphosphorylated state.
As mentioned in the introduction, there are alternative con-
trol mechanisms such as secondary modifications, which can
modulate the activity of a phosphorylated protein, or in the
case of ubiquitination, target it for destruction. Examples in
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which dephosphorylation is likely to be important are ones in
which a protein has a long half life, and during that half life,
it needs to cycle dynamically between phosphorylated and
unphosphorylated forms; alternatively, cases in which there
is a need for very fine grain control, opposing kinases, and
phosphatases may compete to determine the activity of a
given protein. An example of this is the competing activities
of Wee1 kinase and cdc25B phosphatase on mitotic cyclin/
cdk complexes (Russell and Nurse 1986).

Conclusion
The FANTOM2 project highlights the advantages of a tran-
scriptome-based approach. FANTOM2 has been able to con-
firm transcript prediction from the genome, but additionally,
it has identified transcripts missed by the Ensembl gene-
prediction pipeline. Some cases confirmed a Genscan predic-
tion, whereas others identified completely undetected tran-
scripts. Gene prediction algorithms applied to genomic se-
quence generally depend on a gene model, transcripts that
break the model enhance our understanding of genes and
how to better model them. This highlights the complemen-
tary nature of the transcriptome and the genome. Transcrip-
tional evidence is necessary for defining coding regions
within the genome and confirming genomic predictions.
Conversely, genomic sequence is necessary for identifying po-
tential transcripts and determining gene structure, in particu-
lar, exon-intron boundaries and promoter sites.

By mining sequence annotations for specific InterPro
motifs, we have identified 561 candidate protein kinases and
162 protein phosphatases. Using TribeMCL protein sequence
similarity clustering, we were able to separate the different
classes of protein kinase and phosphatase within the sets.
TribeMCL also provided a certain level of quality control to
the classes assigned by InterPro motif detection, by allowing
us to distinguish true kinase and phosphatase members from
related gene family members. This separated the sets into 502
likely protein kinases and 96 likely protein phosphatases. Fi-
nally, the FANTOM libraries have provided us with the only
transcript evidence for 13.5% of the protein phosphatases and
20% of the protein kinases described in the transcriptome.
This represents a great resource, and the availability of full-
length cDNAs from the FANTOM libraries will provide valu-
able clones necessary for functional confirmation of these
genes in the future.

METHODS

Nonredundant Protein Sequences Used
in This Analysis: RPS3, SWALL, and IPI
The RTPS group at RIKEN produced a nonredundant Repre-
sentative Protein Set RPS3 that incorporates sequences from
the public domain and the RIKEN FANTOM2 libraries. During
the course of this study, the RPS set has undergone a number
of updates; it currently stands at RPS 6 (http://fantom2.
gsc.riken.go.jp). SWALL and the International Protein Index
(IPI; http://www.ebi.ac.uk/IPI/) represent nonredundant pro-
tein sets available from EBI (http://srs.ebi.ac.uk). IPI is cur-
rently available for mouse and human, and merges entries
from Ensembl, SWISS-PROT, TrEMBL, and REFSEQ. There is a
large overlap between IPI and SWALL, however, SWALL has
more partial sequences and does not incorporate Ensembl
gene predictions.

Identification of Protein Kinases and Protein
Phosphatases Within the FANTOM2 EST Sequences
Preceding the nonredundant kinase and phosphatase sets we
detail in this work, a primary analysis was carried out on the
raw FANTOM2 data that indicated a number of novel kinase
and phosphatases were present. All sequences predicted by
InterPro as containing a protein-kinase domain or a protein-
phosphatase domain (Table 1) were inspected manually
within the MATRICS annotation viewer and checked for simi-
larity to known proteins. A small number of partial sequences
identified in the curation phase were excluded from RPS3
(RPS had a requirement that the sequences be full length).
These sequences were added back into the analysis prior to
mapping.

Mapping of Mouse Kinase and Phosphatase
Sequences to a Mock Locus
As detailed in the Results section, sequences identified from
the nonredundant protein databases, SWALL, IPI, and RPS3,
were merged. Where possible, sequences were assigned
Ensembl identifiers or MGI loci. These were extracted from
cross-references found in the sequence entry, and if entries
from different databases were derived from the same
SWISS-PROT, TrEMBL, or REFSEQ entry, they also inherited
the Ensembl or MGI locus. Those sequences for which there
was no mapping information had their underlying EST se-
quence extracted. This EST sequence was then used in a
BLASTN alignment with the Ensembl gene predictions. The
best three hits for each EST were examined manually. In cases
in which the alignment was convincing, the sequence entry
was assigned the Ensembl gene to which it hit. Similarly,
those sequences that failed to hit an Ensembl gene were used
in a BLASTN alignment of the Ensembl Genscan predictions.
Those sequences that failed to hit either, were assigned the
original identifying EST accession number. The Ensembl se-
quences used are available for download from http://www.
ensembl.org/Mus_musculus. The standalone version of
BLAST used was BLASTALL available at http://www.ncbi.nih.
gov/BLAST.

Selection of Representative Sequences
for Downstream Analysis
After assigning all of the sequences to a mock locus, it was
possible to sort the sequences and choose a representative.
The longest peptide sequence that mapped to a given locus
was extracted for cluster analysis. Annotations were examined
from all sequences that mapped to the same locus. If the an-
notations generally agreed, the most informative annotation
was taken.

Domain Architecture
InterPro domain predictions for all sequences used in this
analysis were extracted from the database from which the
sequence originated. Domain predictions on sequences from
the SWALL and IPI sets were extracted using the sequence
retrieval system SRS at EBI (Etzold and Argos 1993; http://
srs.ebi.ac.uk).

TribeMCL Clustering
The representative sequences for each family were clustered
using TribeMCL (Enright et al. 2002; http://www.ebi.ac.uk/
research/cgg/tribe). The sequences were compared against
themselves using an all-against-all BLASTP comparison. In
this work, we used an expectation value cutoff of e-10 and
used the BLOSUM62 matrix. The results of this blast compari-
son was then parsed and clustered by TribeMCL. We used an
inflation value of five within TribeMCL to increase the granu-
larity of the classifications. Mapping of cluster results to de-
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scriptions and domain combinations was carried out in Mi-
crosoft Excel.

CLUSTALV Clustering of Large TribeMCL Clusters
CLUSTALV (Higgins et al. 1992) was used to segment the ser-
ine/threonine kinase cluster, the tyrosine-kinase cluster, the
tyrosine-phosphatase cluster, and the dual-specificity phos-
phatase cluster produced by TribeMCL. CLUSTALV was first
used to produce multiple alignments for sequences within the
larger clusters; it was then used to create phylogenetic trees
using the Neighbor joining option, with 1000 bootstraps. The
larger branches within these trees were then used to subclass
the TribeMCL clusters.

Database Versions
Ensembl mouse release (v. 7.3b.3 12 July 2002). SWALL is
updated weekly and IPI is updated monthly, the versions used
to produce the nonredundant protein-kinase and protein-
phosphatase sets were indexed the week of June 28 2002.
RPS3—representative protein set 3 (http://fantom2.gsc.riken.
go.jp).

InterPro Assignments
As detailed within the results, InterPro assignments for the
initial identification of candidate sequences and for the later
domain associations were extracted from the previously an-
notated data sets. This includes IPI, SWALL, FANTOM2, and
RPS3. These assignments had been made using InterProScan,
which are detailed at http://www.ebi.ac.uk/interpro.
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