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1 Theory

Olender and Elber [1] reformulate the least action principle in terms of the
error between an approximate path and the physical path. In t his section
the we outline the key elements of this approach and highlight the details of
our algorithm.

Any path defined by the boundary conditions [x(tinitial),x(tfinal)] can be
approximated by the set of coordinates xapprox(t). The probability of a tran-
sition between a pair of these coordinates xapprox(ti),xapprox(tj) can be ex-
pressed as the conditional probability in the following form.

P (xapprox(tj)|xapprox(ti); ∆t) , ∆t = tj − ti

The transition which maximises this probability is the nearest transtion to
the true trajectory. By applying this reasoning to each transition along the
trajectory we can located the most likely path.

If we assume that the error which arises from the discrete step is gaussian
around the trtue trajectory then it is possible to approximate the error cor-
relation between two steps as

〈ε(ti)ε(tj)〉 ≈
σ2δij

∆t
(1)
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This allows us to define the conditional probability of a particular transition
as

P (x(ti)|x(ti + ∆t); ∆t) =

(
1

2π〈ε2〉

)d/2

exp

[
−(x(ti + ∆t) − xapprox(ti + ∆t))2

2〈ε2〉

]
(2)

This is turn allows us to formulate an expression for the conditional probabil-
ity of an entire trajectory as the product of all of the transition probabilities
of that trajectory.

ΠiP (x(ti)|x(ti + ∆t); ∆t) ≈ exp

[
−

(
1

2σ2

) ∫
(ε(t))2 dt

]
(3)

In this way we have a single exponential function representing the probability
that a certain trajectory is correct expressed in terms of the error from the
true path. Intuitively, the path with the highest probability has zero error
at each point in the path.

Onsager and Machlup state that the probability that a given trajectory x(t)
will satisify Langevin’s equation of motion is given by the equation

P [x(t)] ∝ exp

[
−S
kBT

]
(4)

where the kB is Boltzmann’s constant and T in this expression is equivalent
to the temperature of the system. Comparing this expression to equation 3
we get an expression for the action given by

S =

∫
(ε(t))2 dt (5)

This equation is a version of the Onsager Machlup Action.

It is now necessary to formulate a function for the error in the path. As
in Olender and Elber’s paper we have chosen to formulate this error based
on Newtons equations of motion.

For the correct trajectory, we assume that the following result holds at every
point along the path.

Fi − miai = 0

An approximation to this path can be rewritten as

dV (xapprox(t), t)

dx
−m

d2xapprox

dt2
(t) = ε(t) (6)
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Where the ε(t) is now the error in the path. By using this expression in
equation 5, the action can be represented

S =

∫
(F(t) −mẍ(t))2 dt (7)

Using this formualtion of the action instead of the one proposed by Hamilton
?? forces the action to be positive and non-zero for all trajectories which do
not follow the exact path. Furthermore the exact trajectory will have a value
for the action of zero.

In this way we have reformulated the path search as a global minimisa-
tion problem. It remains now to specify an approximate path in terms of a
parameter set and apply standard minimisation algorithms.

In this analysis the expansion chosen is the fourier sine series. The mo-
tivation, advantages and disadvantages with this choice are described in the
following paragraph.

Specifying the path as

x(t) = x0 + at +
∑

i

bi sin

(
iπt

τ

)
(8)

where x0 is the initial positions of the particles and a represents an initial lin-
ear approximation to the path. This expansion is clearly useful in situation
where the positions return to initial configurations as in the case of molec-
ular motors. There is alsoan ablity to amplify or damp physical properties,
such as viscous or drag effect and high frequencey oscillations by adding or
removing terms in the expansion. This type of expansion also lends itself
to the use of heiraical path searching regimes. Successive minimisation runs
with increasing numbers of expansions allows efficient minimisation by first
optimising the gross movements of the molecule using lower modes and the
adjusting the path using the highr modes. For the expansion shown in equa-
tion 8 there is a key limitation when applied to situations which have initial
forces. In these cases there will always be a non-zero final action arising
from the second derivative of 8 being initially zero for all experiments. This
causes equation 7 to be non-zero initially. It was necessary to cater for this
in experiment two to achieve the desired zero-action path and is seen clearly
in experiment three. This does not show a deficiency with the algorithm,
but with the choice of expansion and this limitation should be kept in mind
when selecting test cases for the process.

3



The recent work of passerone and parrinello [7] uses an iterative process
to attain dynamical trajectories from know boundary conditions. Their ap-
proach avoids the use of second derivatives by successive minimisation steps
which progressivley optomise the energy and minise the aciton. In this paper,
we have choosen to use the analytic second derivative to enable the implemen-
tation of fast optomising regimes such as the conjugate gradient technique
and avoid multiple minimisation runs. In the following paragraphs, some of
the key derivations and the basic algorthm used in the results section are
outlined.

Since the motion of the a particular particle is governed by its interactions
with surrounding particles a potential energy function which captures these
interactions needs to be built. In the following results sections the potential
energy functions are drawn from literature and are expressed in terms of only
the coordinates of the particles. Knowing these potential energy functions
we can find the derivative of the action as

S = Σ (F(t) −mẍ(t))2

∂S
∂b

= 2 (F(t) −mẍ(t))
(

∂F(t)
∂b

−m∂ẍ(t)
∂b

)
where

F(t) = −dV(t)

dx

and the ẍ(t) represents the time derivative of the path given by the expansion
in equation 8. By calculating these derivatives analytically it is possible to
employ standard minimisation algorithms such as conjugate gradient min-
imisation in order to locate the set of coefficients {b} for which the action is
zero. This algorithm is summariesed below

1. Define a initial guess of the path in terms of and adjustable set of
parameters {b}.

2. Specify all the interactions of intrest in terms of a potential energy
function V(t).

3. Evaluate the action and its derivatives at each time step from the ex-
pressions 7 and 1 and apply conjugate gradient minimisation in order
to locate the coefficient which minimises the action.

There are a number of advantages and disadvantages in formulating the
problem in this least action framework. These shall now be discussed in
greater detail.

One of the more apparent advantage to this algorithm is greatly ad-
justable to suit the computational limitations. In theory, the coarseness of
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the time samplling used in the simulation does not effect the existance of a
stable trajectory. This allows the location in time of key events to discovered
at a coarse grained level and then investigated at greater detail. In practice
this is not the case. An insufficient number of samlple points would poten-
tially avoid key events in the transition, resulting in a path which does not
capture the real dynamics accurately. This results from the algorithm just
searchingfor a path whose action is zero. While there may be more than
one of these according to initial conditions, there will always be at least one
stable trajectory.

The number of coefficents can also be adjusted to suit available compu-
taton time. As mentioned previously, the fourier expansion allows the user
to treat the optomisation part of the algorithm hierarchically. This greatly
improves the efficiency of the algorithm by dealing with the low modes of
oscillation first and building the fine adjustments from this. The adjustabil-
ity of the number of expansions is both a strength and a weakness. If the
user undestimates the number of expansions necessary to bring the system
to the final conditions in the given time then an additional force is needed
to satisify the boundary conditions. This force is not catered for in this
technique and will show in the action calculation. It is therefore necessary
progressively increase the number of expansions till no change is seen in the
action calculation.

A computational advantage to this formulation is it’s suitability to par-
allel processing. As there is no need to calculate the path in the order it
occours in, processors can be assigned individual time slices and all path
calculation can take place simultaneously.

Finally, as this is constructed in the form of a boundary value problem,
the transition process will always finish at the final state. This is not a
guarentee in a finite time for traditional forward integrating regime.

These advantages make this a useful, efficient technique for solving prob-
lems where the boudary information is known.

These difficulties are being investigated at present and other expansions are
being tested for applicability.

2 Results

In the following section we will overview some of the results achieved using the
method outlined in the previous sections along with the discussion concerning
the effectiveness of the technique and difficulties encountered.

The first of the systems will be a simple two bodied harmonic oscillator.
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This is a particularly simple system given the expansion that we have chosen
in this overview. The next two systems we investigate here are using a
standard Lennard-Jones interaction potential. The first of these is a straight
forward three bodied rotation, the accuracy and efficiency of the method
applied to this system will be investigate. Finally some initial testing on a
seven particle Lennard-Jones cluster as tested by Dellago et. al. [5].

Convergence to a stable final path is very rapid in the first two of these
systems. The final system converges slower, however applying the iterative
scheme outlined in the theory section, convergence to the final solution is
rapid.

2.1 Harmonic Potentials.

The harmonic potential used in experiment one is given by the function in
equation 9 and operates across all bonds.

V(t) =
1

2
kb ((xj − xi) − xequlib)

2 (9)

Where the equlibrium separation (xequlib) and the spring constant (kb) are
set to 0 and 1

2
respectively. The mass for both particles is equal and the

initial separation between the particles is zero.

2.1.1 Experiment 1: Two Particle System.

The time scale for the simulation is chosen so that the particles return to
their starting configuration. In this one space, one time dimensional problem
the particles have been allow to crossover.

For the purposes of the algorithm the inital choice of coefficients for the
minimisation is random. The figure below shows a plot of path given by the
initial guess in dashed line and the final solution for the system is shown by
the solid lines. The figure on the right is a demonstration of the convergence
to the final solution in terms of the number of iterations.

It is clear that in this simple experiment the intuitive path is reached in
very few iterations. The overall action for this final path is zero. In this sim-
ple experiment, this approach is very efficient. In the next two experiments
we investigate gradually more complex situations.
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2.2 Lennard-Jones Potentials.

For the following two experiments, the interaction potential is the non-
bonded Lennard-Jones potential. This is shown in the following equation

This interaction exists across all pairs of atoms.

In the following experiments the initial positions of the particles has been
chosen as the force equlibrium positions. This is important for achieving zero
action pathways in this type of simulation.

In the following two experiments, three particles are rotating in a clock-
wise direction. The initial and final separations for all pairs of particles in
each of the systems is the same. This means that the initial and final forces
are the same. For this to be the case it was necessary to balance the an-
gular momentum of the particles with the lennard-jones force. The purpose
of placing the particles at these positions was to ensure that the true path
would be circular. This has been done for comparison purposes so that the
simple expansion we have used would be able to closely approximate the
path.

Because of the simplicity of the present expansion choice it has been nec-
essary to choose cases where the expansion will not damage the experimental
results. Further work will certainly improve the expansion choice and allow
broader application of this method. In the following two experiments the
potential function used is the Lennard-Jones potential for simulating the .......
This is expressed mathematically as

and operates across all pairs of atoms. In both experiments all the parti-
cles masses are equal and the coefficients Aij and Bij are chosen so that the
particles are initially at their equlibrium positions.

2.2.1 Experiment 2: Three Particle System

The figure below shows the setup for experiment two. Again all particle are
chosen to have equal mass and the transition time (T ) is chosen arbitrarily.

The rotation in this experiment requires an initial force. This initial force
will show up in the action calculation yielding a non-zero final action. In this
simple example, it is possible to adjust the starting position of the particles
in order to achieve a zero final action. In this case the resulting path will
be circular and the particles will stay at their equlibrium positions for the
whole transition.
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The right hand plot in the figure below shows the difference betweenn the ini-
tial guess at the coefficients and the final paths of the particles. The dashed
line show the initial choice of the coefficients and the solid line show the final
path. The result shown uses 21 coefficients. As in the previous experiment,
the figure on the right shows the convergence to this final solution. From this
second plot it is again clear that the final result is converged to this solution
within a few iterations.

The following figures were done using just one expansion as an approximation
to the path since the additional expansions used in the figure !!!!!!!!!ref!!!!!!!!!
do not significantly alter the path. The following figure compares the force
on one of the atoms on the right, and the difference between the final path
found using the one expansion and the true circular path.

This demonstraights the need for a more accurate expansion by showing
that the inability of the expansion to accuratly represent the true path is the
main limitation in achieveing a dynamical solution.

2.2.2 Experiment 3: Seven Particle System

This final experiment has used the same potential as in the previous exper-
iment. The three rotating particles have been embedded in a symmetrical
seven bodied cluster. The figure below shows the experimental setup. In this
case the four new particles do not rotate.

As a first approximation to the path we have chosen to use the result achieved
form the previous experiment. The figure below shows a plot of the solution
which was converged to.

The convergence to the final solution in this experiment was much slower
than in previous examples. However, by applying the heirical optimisation
resume the minimisation can be done in a short time. In this case the final
path did not yield a zero action path. The final result of the minimisation was
a local minima in the action surface. This means that the final path achieved
was the nearest to the true path possible using this particular expansion.
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3 Discussion and Conclusions

It is clear from this initial analysis that while the choice of expansion is not
sufficient for general cases the algorithm is sufficient for

Acknowledgements: If there are any, introduce a paragraph of acknowl-
edgements with \paragraph{Acknowledgements:} .

References

[1] R. Olender and R. Elber, Calculation of classical trajectories with a
very large time step: Formalism and numerical examples. Journal of
Chemical Physics 105 (1996), 9299-9315.

[2] P. Ferrara, J. Apostolakis and A. Caflisch, Targeted molecular dynamics
simulations of protein unfolding. Journal of Physical Chemistry B 104
(2000), 4511-4518.

[3] P. Ferrara, J. Apostolakis and A. Caflisch, Computer simulations of pro-
tein folding by targeted molecular dynamics. Proteins-Structure Func-
tion and Genetics 39 (2000), 252-260.

[4] C. Dellago, P.G. Bolhuis, F.S. Csajka and D. Chandler, Transition path
sampling and the calculation of rate constants. Journal of Chemical
Physics 108 (1998), 1964-1977.

[5] C. Dellago, P.G. Bolhuis and D. Chandler, Efficient transition path sam-
pling: Application to Lennard- Jones cluster rearrangements. Journal of
Chemical Physics 108 (1998), 9236-9245.

[6] C. Dellago, P.G. Bolhuis and D. Chandler, On the calculation of reac-
tion rate constants in the transition path ensemble. Journal of Chemical
Physics 110 (1999), 6617-6625.

[7] D. Passerone, M. Ceccarelli and M. Parrinello, A concerted variational
strategy for investigating rare events. Journal of Chemical Physics 118
(2003), 2025-2032.

[8] D. Passerone and M. Parrinello, Action-derived molecular dynamics in
the study of rare events. Physical Review Letters 8710 (2001), art. no.-
108302.

9



[9] M. Parrinello, Action-derived molecular dynamics in the study of rare
events. Abstracts of Papers of the American Chemical Society 221
(2001), 140-PHYS.

10


