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Abstract 

Increasing the success in obtaining structures and maximizing the value of the 

structures determined are the two major goals of target selection in structural 

proteomics. This critical process consists of predicting and quantifying target 

properties to restrict selected candidates to those of particular interest and those 

that have the greatest chance of being structurally characterized. We present an 

efficient and flexible target selection procedure supplemented with a web-based 

resource that is suitable for small- to large-scale structural genomics projects that 

use crystallography as the major means of structure determination. Based on 

three criteria, biological significance, structural novelty and “crystallizability”, the 

approach first removes (filters) targets that do not meet minimal criteria and then 

ranks the remaining targets based on their “crystallizability” estimates. This novel 

procedure was designed to maximize selection efficiency, and its prevailing criteria 

categories make it suitable for a broad range of structural proteomics projects. 

 

Key Words: High-throughput methods, protein crystallization, protein expression, 

protein properties, protein structure determination, sequence comparison, 

structural genomics, structural proteomics, target selection.  
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1. Introduction 

The task that initiates all structural proteomics/genomics projects is choosing the 

targets - proteins, or regions of proteins - that will enter the structure determination 

process. This target selection step is particularly important because it embodies the 

goals of each specific project and because it can substantially influence the overall 

success rate of the process. Although each specific structural proteomics program may 

have a different biological focus, methodology and throughput (1-6), there are 

nonetheless common criteria that can be used to select targets. 

Target selection criteria can be divided into three categories: (a) biological 

significance/impact, (b) structural novelty and (c) likelihood to crystallize. Clearly, the 

classification of biological significance/impact will vary from one project to another, but 

structural novelty and likelihood to crystallize are common criteria for most target 

selection procedures. Furthermore, selection criteria can be categorized into two types: 

filters and sorters. Filters remove those targets that possess undesirable features 

(those having a known structure, for example), while sorters allow the ranking of 

remaining targets so that the desired number of targets may be selected from the top-

scoring targets.  

The goal of the method described here is to provide a general approach for 

selecting targets in a small- to large-scale protein crystallography context. 
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2.  Methods 

2.1. Target Selection Frame Description 

The process can be broken down into three sequential steps: automated filtering, 

ranking/sorting, and manual filtering (Fig. 1). The order of this sequence was designed 

to maximize efficiency of target selection while allowing the flexibility to cater for a 

specific focus of a structural proteomics project. This section overviews the strategy 

and the methods used in the target selection procedure. The following final section 

presents the application of the procedure. 

 

2.1.1. Automated Filtering (Step 1) 

Automated filtering represents the major selection step. It includes criteria from all 

three of the selection categories mentioned above (biological significance/impact, 

structural novelty, likelihood to crystallize). It includes all criteria that are amenable to 

computer automation and that are not components of the ranking parameters (listed in 

2.1.2.). Examples of criteria that can be applied at this step are presented in Fig. 1. 

The outcome of this first step is a list of targets that have passed all the selected 

criteria (see Note 1). 

 

2.1.2. Ranking of Targets (Step 2) 

The automated filtering will often result in more targets than can be handled in a 

single iteration of high-throughput protein production and structure determination. It is 

important therefore to be able to prioritize targets selected in step 1. In this procedure, 

the targets selected by the automatic filtering procedure are subsequently ranked 

according to their likelihood to crystallize. Recently, several groups have shown clear 
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correlations between crystallization success and protein properties predicted from 

sequence only (7-10). 

Target selection methods take advantage of the data generated by structural 

genomics projects to identify correlations between protein attributes (determined by 

sequence analysis) and its success or failure through the expression-purification-

crystallization process. This is then used to extract rules for target selection to optimize 

the output. One approach to detect such crystallization predictors consisted of 

generating distributions of various potentially relevant properties from a set of proteins 

(whole Thermatoga maritima proteome) and from the subset of those that crystallized, 

to analyze trends for crystallization success (7). The outcome was a list of 

crystallization predictors and target filtering strategies. Because we are interested at 

this stage in ranking rather than filtering, we used a similar approach to re-generate the 

distributions to quantify the likelihood of target crystallization, which is described below. 

We chose a larger and more representative initial set of proteins to represent the 

“whole universe” of proteins by using more than 3 million protein sequences from the 

non-redundant sequence database, and a non-redundant sample from the Protein 

Data Bank (PDB) as the subset representing the universe of successfully crystallized 

proteins. The normalized distributions are similar to those obtained from the 

Thermatoga maritima genome, thus validating the pertinence of both datasets. The 

predictive power of a given sequence characteristic is inversely proportional to the area 

of overlap between the global distribution and the crystallized distribution. The protein 

properties we use for estimating crystallization likelihood are: sequence length, 

predicted isoelectric point, percentage of charged residues, hydropathy, and a 

measure of low complexity disorder (see Notes 2-4). These have already been 

reported as parameters influencing crystallization success (7-10). We are currently in 
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the process of systematically testing other parameters to further improve efficiency. 

Finally, the likelihood estimate p is calculated according to: 
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where Yi
C  represents the frequency of proteins from the crystallized subset that 

match parameter i value (with a sequence length of 250-260 residues for example) of 

the protein evaluated (253 residues for example); and Yi
U  represents the 

corresponding value from the whole “universe set of proteins". This formula can be 

related to a probability calculation where the ratio represents the number of successful 

events (crystallized proteins subset) over the whole set. The properties (e.g. length, pI, 

percentage of charged residues) are considered independent, which is reflected by the 

use of the product in equation 1. The application of the ranking step is achieved 

through the Web-based “UQSG Target Ranker” (see 2.2.2.).  

 

2.1.3. Manual Filtering (Step 3) 

The final step is the manual evaluation of each of the ranked targets. This optional 

step is used because some criteria may be too difficult to program and because the 

programed selection procedures may have weaknesses. Typically the protein 

description, ontology, literature searches and personal knowledge are employed to 

identify any specific problems in the remaining selected targets. Evaluating each target 

manually is time-consuming, thus this step is performed last. In truly high-throughput 

programs manual intervention in the target selection is generally omitted; however, in 

small- and medium-throughput programs additional quality control can help to focus on 

targets with higher biological significance and scientific impact. 
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2.2. Applying the Target Selection 

2.2.1. Full-Length Protein or Protein Constructs? 

Construct design may be considered for proteins of higher value. The constructs 

may be designed to pass given selection criteria (e.g. removal of transmembrane 

domains, deletion of low complexity regions) and to divide the protein into predicted 

functional domains. In either case the aim is to increase the chance of obtaining a 

crystal structure at the cost of limiting the structural information to a part of the protein, 

and lowering the protein flow rate through the pipeline (N constructs of a single protein 

instead of N different proteins). 

Useful information to consider in designing constructs includes alternative splice 

variations (see Note 5), domain homology searches in combination with secondary 

and tertiary structure prediction (to help defining domain boundaries), and 

“problematic” region prediction such as trans-membrane domains (to omit in construct). 

Table 1 provides suggested links for accessing this information. 

In any case, the selection procedure that follows is unchanged, as it does not 

distinguish between full-length or designed protein constructs; the target definition is 

any input sequence. 

 

2.2.2. Selecting the Appropriate Criteria 

Translating the project aims into criteria is a critical and subtle process. The vast 

amount of information that is readily available on protein targets through bioinformatics 

can retrieve an enormous amount of “interesting” information that is tempting to include 

in the selection process. We recommend restricting the criteria at this stage only to 

those that are able to remove targets (see Note 1). 
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Fig. 1 lists example of criteria. They are divided in the three categories mentioned 

above, namely biological significance/impact, structural novelty, and likelihood to 

crystallize. Brief comments and tips are also given below. 

The biological significance/impact criteria category will segregate targets based on 

organism origin, amino acid sequence characteristics (e.g. protein family, presence of 

a particular domain, sequence similarity to human orthologue) and on the results of a 

specific type of assay (e.g. biophysical, biochemical, clinical test). We recommend 

using available functional data if possible, as this can be highly valuable for biological 

significance and impact. For example, we use microarray data to select targets that are 

likely to have a role in inflammation (see Note 6). Also, if the target proteins are not 

from Homo sapiens, assessing target relevance in human biology may be assed based 

on sequence similarity. For example we select those proteins with a minimum of 70% 

sequence identity with human proteins (probable human orthologues). 

 The structural novelty criterion is based on sequence alignment with proteins from 

the PDB. The 30% identity threshold is based on the assumption that a higher 

sequence identity enables homology modeling, thus reducing the value of structure 

determination. Although the percentage of sequence identity with known structures is 

indicative of structural novelty, more powerful tools such as threading (Table 1) based 

on tertiary structure prediction alignment can be used where obtaining new folds is of 

particular concern. 

The “likelihood to crystallize” section is composed of one filter (no transmembrane 

helix) followed by a series of parameters (sorters) used to estimate the crystallization 

likelihood (method detailed in 2.1.2.). Although transmembrane sequences have a 

large detrimental effect on solubility and crystallization (7), this criterion is optional in 

the Web-based tool to allow for the specific study of membrane proteins. 
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Finally, changing the order of application of these criteria will not modify the 

output, however it does affect computer-processing time. Therefore we recommend 

applying the less time-consuming criteria first. 

 

2.2.3. Using the Web-based Target Ranking Tool 

The Web-based resource (“UQSG Target Ranker” available at 

http://foo.maths.uq.edu.au/~huber/UQSG/ranker.pl), is a tool for automatically 

selecting and sorting targets based on predicted likelihood of crystallization. The inputs 

are target sequences and selected criteria; the output is a list of selected targets that 

are ranked according to their predicted crystallization likelihood estimates. A variety of 

sequence-based criteria have been proposed to predict the likelihood for a protein to 

crystallize (7-10) and the five most predictive ones have been implemented in our web 

server (see 2.1.2. for details). With our tool, we give the user the option to rank target 

sequences supplied in FASTA format according to all, or individually selected 

parameters.  

 

3. Notes 

1. Why filter rather than rank? The use of a ranked grading system (for example 1: 

“very bad”, 2: “bad”, 3: “OK”, 4: “good”, or 5: “very good”) leads to target comparisons 

based on arbitrary grades and grade combinations, resulting in inconsistent selection 

of targets. Instead, we use filter-type criteria (0: “discard” or 1: “keep” output per 

criterion) where each criterion selects independently of the others, allowing 

unambiguous and precise control over the selection of target proteins. The 

ranking/sorting is achieved in the following step, on crystallizing likelihood estimates. 
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2. The length of the protein sequence has a strong influence on protein 

crystallization. When the size of a protein is too small, generally its thermodynamic 

stability is marginal and intrinsic thermal motion can inhibit crystallization. Very large 

proteins are also more difficult to crystallize because they are likely to exhibit higher 

flexibility and a reduced translational and rotational motion in solution, leading to 

kinetically inhibited nucleation. 

3. The pI of a protein may influence crystallization success. At conditions with pH 

of the solution equal to the pI of the protein, the net charge on the protein is zero and 

as a result no overall electrostatic repulsion between protein molecules is present. 

Standard protein crystallization screens contain conditions optimized to crystallize a 

“typical” protein with only weakly repulsive (effective) interactions in stock solution. 

Given a standard (non-optimized) protein buffer (typically pH 7.0-7.5), choosing 

proteins within the appropriate pI range, and thus appropriate effective interactions, 

can be beneficial. 

4. Another criterion based on similar rationale as the pI is the percentage of 

charged amino acids in the sequence. Other physical properties of a protein that are 

known to influence crystallization, and thus can be beneficial when taken into account 

to rank targets, are the number of residues in regions of low complexity (associated 

with disordered regions), and the overall hydropathy. 

5. It is useful to consider splice isoforms; nature may have already designed the 

construct for us, although one must keep in mind that splice forms may have different 

functions or may not be functional at the protein level (11-13)) 

6. Functional data may add great value in terms of biological significance/impact. 

Microarray technology is particularly suitable for obtaining functional data in high 

throughput. The “> 3 fold transcriptional regulation upon stimulation” criterion in Fig. 1 
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is an example of a criterion used for such experiment, although the threshold is specific 

to the data (for more details see a separate chapter in this volume (Meng et al.: 

Overview of the pipeline for structural and functional characterization of macrophage 

proteins at the University of Queensland).  

7. A note of caution. While target selection can help improving the apparent 

success rate of structure determination, it simultaneously introduces a strong bias to 

narrow the diversity of proteins for which the structures are being determined. In an 

uncontrolled extreme, this can lead to a circular process, in which empirical target 

selection will be based on previously successful structure determination, but future 

structure databases will be contain to a large proportion proteins that have been 

selected with this same bias.   

8. Interestingly, despite many improvements in approaches to select new targets 

for structural genomics pipelines over the last decade, the success of these methods in 

practice is not well established. Partly, this is due to the difficulty to delineate effects as 

a result of changes in experimental procedures from improvements as a result of 

targeted selection itself. With experimental procedures becoming more established 

over time, it will be interesting to monitor future development of target selection 

methods. 
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Table 1.  

Useful links for protein construct design 

 Software URL 

S
p

lic
e 

va
ri

an
t 

da
ta

b
as

e 

 

H-InvDB (14) 

LOCATE (15) 

Macrophages.com 

Genome Browser (16) 

http://hinvdb.ddbj.nig.ac.jp/ahg-db/index.jsp 

http://locate.imb.uq.edu.au/ 

http://www.macrophages.com/bioinfoweb/ 

http://genome.ucsc.edu/cgi-bin/hgGateway 

 

D
o

m
ai

n
 

h
om

o
lo

g
y 

se
ar

ch
 

 

 

RPSBLAST (17) 

CDART (18) 

BLAST (19) 

 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi 

http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi? 

http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi? 

 

Unstructured regions 

IUPred (20, 21) 

DisEMBL (22) 

GlobPlot (23) 

http://iupred.enzim.hu/index.html 

http://dis.embl.de/ 

http://globplot.embl.de/ 

(for a more complete list see the chapter by Dosztáni and Tompa in this book) 

 

Transmembrane regions 

TMHMM (24) 

 

http://www.cbs.dtu.dk/services/TMHMM-2.0/ 

 

Signal sequence 

“P
ro

bl
em

at
ic

” 
re

g
io

n 
p

re
d

ic
ti

o
n

 

 

SignalP (25) 

 

http://www.cbs.dtu.dk/services/SignalP/ 

 

Secondary structure prediction 

 

JPREP (26, 27) 

PredictProtein (28) 

PSIPRED (29) 

http://www.compbio.dundee.ac.uk/~www-jpred/ 

http://www.predictprotein.org/ 

http://bioinf.cs.ucl.ac.uk/psipred/ 

 

Tertiary structure prediction 

 

S
ec

o
n

d
ar

y 
an

d
 t

er
ti

ar
y 

st
ru

ct
u

re
 

p
re

di
ct

io
n

 

 

Phyre (30) 

FUGUE (31) 

WURST (32) 

http://www.sbg.bio.ic.ac.uk/~phyre 

http://www-cryst.bioc.cam.ac.uk/fugue/ 

http://www.zbh.uni-hamburg.de/wurst/ 
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Figure Legend 

 

 

Fig. 1. A schematic diagram illustrating the target selection procedure. 
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Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples of criteria 
 

Examples of parameters used 
 

Examples of information used 

Step 1: Automated Filtering 
 

Biological significance 
 

Structural novelty 
 

Likelihood to crystallize 
 

SELECTED TARGETS 

Step 2: Sorting 
(Based on crystallization 

likelihood estimates) 
 

Likelihood to crystallize 

Step 3: Manual filtering 
 

Biological significance 

No predicted TM helices 

Sequence length, % charged residues, hydrophobicity, 
isoelectric point, low complexity disorder 

 

Name and ontology, literature search 
 

< 30 % sequence identity with PDB 

> 3 fold transcriptional regulation upon macrophage stimulation 
> 70% sequence identity with human protein 
 


