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SUMMARY

Computational and nuclear magnetic resonance
hybridapproachesprovideefficient tools for3Dstruc-
ture determination of small proteins, but currently
available algorithms struggle to perform with larger
proteins. Here we demonstrate a new computational
algorithm that assembles the 3D structure of a protein
from its constituent super-secondary structural mo-
tifs (Smotifs) with the help of pseudocontact shift
(PCS) restraints for backbone amide protons, where
the PCSs are produced from different metal centers.
The algorithm, DINGO-PCS (3D assembly of Individ-
ual Smotifs to Near-native Geometry as Orchestrated
by PCSs), employs the PCSs to recognize, orient, and
assemble the constituent Smotifs of the target protein
without anyother experimental data or computational
force fields. Using a universal Smotif database, the
DINGO-PCS algorithm exhaustively enumerates any
given Smotif. We benchmarked the program against
ten different protein targets ranging from 100 to 220
residues with different topologies. For nine of these
targets, the method was able to identify near-native
Smotifs.

INTRODUCTION

Determining the three-dimensional (3D) structures of proteins

by nuclear magnetic resonance (NMR) spectroscopy becomes

increasingly challenging for proteins of increasing molecular

weight, as the NMR spectra show more spectral overlap and

not all signals can be resolved. Spectral overlap is particularly

severe for 1H-NMR resonances of amino acid side chains,

hindering the unambiguous assignment of nuclear Overhauser

effects (NOE) and making 3D structure determinations from

NOEs difficult. As an alternative, structural restraints can be

derived from pseudocontact shifts (PCSs) of the relatively well-

resolved backbone amide resonances. PCSs can be measured

in simple 2D 15N-heteronuclear single quantum coherence

spectra and can be observed for nuclear spins at large distances

(up to about 40 Å) from the paramagnetic center, especially when
strongly paramagnetic lanthanide ions are used (Otting, 2010).

Computational algorithms have been established to resolve 3D

protein structures using solely backbone amide PCSs (Schmitz

et al., 2012; Pilla et al., 2016). Lanthanide-generated PCSs

have also been used to elucidate ligand-induced conformational

changes in proteins (Pilla et al., 2015; Saio et al., 2015) or to char-

acterize the binding poses of ligandmolecules (Guan et al., 2013;

Chen et al., 2016).

PCSs are measured as the change in chemical shifts caused

by the presence of a paramagnetic metal ion with an anisotropic

component Dc of the magnetic susceptibility tensor c. The PCS

of a nuclear spin is read from NMR spectra as the difference in

chemical shift between paramagnetic and diamagnetic states,

and is given by (Bertini et al., 2002)
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(Equation 1)

where r, q, 4, define the polar coordinates of the nuclear spin with

respect to the center and principal axes of the Dc tensor, where

Dcax and Dcrh are the axial and rhombic components of the Dc

tensor. If the location of the metal center and the size and orien-

tation of the Dc tensor with respect to the protein are known,

Equation 1 can be used to convert the PCS of a nuclear spin

into a restraint of the location of the spin in the Dc-tensor frame.

Many methods have been devised for site specifically tagging

proteins with paramagnetic lanthanide ions to obtain structural

information in solution (Su and Otting, 2010; Keizers and Ubbink,

2011; Liu et al., 2014), in the solid state (Jaroniec, 2015), and in-

side cells (Pan et al., 2016).

The need to know the Dc tensor parameters before PCSs

can be used as structural restraints poses an intrinsic difficulty

for 3D structure determination from PCSs alone. We overcame

this problem by implementing PCSs as structural restraints in

the structure prediction software Rosetta, where the PCSs

help identify correctly folded decoys and guide folding of the

polypeptide chain toward its native structure. For small proteins

up to about 150 residues, this approach allowed us to determine

the Dc tensor and 3D structure simultaneously (Schmitz et al.,

2012; Yagi et al., 2013a).

Limitations arise for larger proteins, requiring different ap-

proaches to 3D structure determination. Rosetta builds the 3D

structure by assembling nine- and three-residue fragments from
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a fragment library that is specifically generated for the target pro-

tein from homologous or orthologous protein structures. The

fragment libraries are restricted in size and contain 200 fragments

for any given nine- and three-residue fragment window. These

restrictions in fragment library size are a compromise between

minimizing conformational search space and maximizing the

probability that the native protein structure can be accurately

assembled from the fragments. Consequently, the Rosetta proto-

col has repeatedly been shown to perform exceptionally well for

predicting the structures of small proteins (Moult et al., 2014),

whereas producing near-native structures of larger proteins re-

quires unique iterative search algorithms and additional experi-

mental restraints (Raman et al., 2010; Pilla et al., 2016).

Structural motifs, characterized as a group of regular second-

ary structure elements connected by loops, such as zinc-/finger,

helix-turn-helix, b meander motifs, and Greek key motifs, are

commonly found in many protein families. The recurrence of

these motifs is thought to reflect duplications, mutations, shuf-

fling, and fusion of genes throughout the course of evolution (Lu-

pas et al., 2001; Alva et al., 2015) and, therefore, they represent a

more natural description of building blocks to assemble protein

folds. The basic unit of a super-secondary structural motif (Smo-

tif) is defined as a pair of regular secondary structure elements

connected by a loop. By this definition, there are only four basic

types of Smotifs, which can be referred to as a-a, b-b, a-b, and

b-a, where a represents a helical element and b an extended

polypeptide strand. Recently, Smotifs have been employed to

build topology-independent structure classification tools for

quantifiable identification of structural relationships between

disparate topologies (Dybas and Fiser, 2016). Importantly, the

total number of different Smotifs observed in all protein struc-

tures known to date has not increased since 2000 (last reported

in 2010) (Fernandez-Fuentes et al., 2010), suggesting that our

structural knowledge of Smotifs is close to complete. Further-

more, it has been shown that all known protein structures can

be reconstructed with good accuracy from the finite set of

Smotifs (Fernandez-Fuentes et al., 2010).

Given these properties, Smotifs lend themselves to use as

basic building blocks for sampling native-like protein structures

and replacing smaller fragment libraries. Two programs using

Smotifs for structure prediction have been described earlier,

called Smotifs in template-free modeling (SmotifTF) (Vallat

et al., 2015) and chemical shift-guided Smotif assembly (Smo-

tifCS) (Menon et al., 2013). Both approaches performed on a

par with current state-of-the-art software such as I-TASSER

(Roy et al., 2010), HHpred (Söding et al., 2005), and Rosetta

(Rohl et al., 2004; Shen et al., 2009), but were reliant on Smotif

libraries specifically generated for the chosen target, making

the libraries non-universal. In the case of SmotifTF (Vallat et al.,

2015), the Smotif libraries are generated from homologous

protein structures, while the SmotifCS (Menon et al., 2013)

approach selects the Smotifs that locally match the experimen-

tally observed chemical shifts. A possible drawback of these ap-

proaches lies in the heuristic Monte Carlo sampling of protein

structures, which limits their successful application to small pro-

teins of around 110 residues. Here we present a new computa-

tional algorithm, DINGO-PCS (3D assembly of Individual Smotifs

to Near-native Geometry as Orchestrated by PCSs), that utilizes

PCSs of backbone amide protons as the only experimental data
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to identify, orient, and build the protein structure from its constit-

uent Smotifs. PCSs of nuclear spins are expected to be available

for paramagnetic metal centers at three different sites of the pro-

tein to pinpoint the location and orientation of the Smotif in a

manner analogous to the use of satellites in the global posi-

tioning system (GPS). The analogy can be visualized by using

Equation 1 to determine isosurfaces of constant PCS. The PCS

isosurface comprises all coordinates where nuclear spins expe-

rience a particular PCS value, similar to the way in which the dis-

tancemeasurement to each satellite in theGPS systempositions

the user on a sphere that is centered on the satellite and has a

radius corresponding to this distance. While an experimentally

determined PCS value ties a nuclear spin to a location on an iso-

surface, a second PCS value for the same spin measured from a

lanthanide attached at a different site restricts the location of the

nuclear spin to lie on the line defined by the intersection of the

respective PCS isosurfaces, and a third PCS value obtained

from a sample with a lanthanide attached at yet another site

leaves only two points as the possible positions of the nuclear

spin. DINGO-PCS takes advantage of the unique information

content carried by PCSs from multiple metal centers to select

and assemble the constituent Smotifs of a target protein from

the database of known Smotifs. The algorithm depends on

PCSs as the only experimental data andworkswithout any phys-

ical or knowledge-based energy function, which are usually

required to validate the protein state. In contrast to Rosetta or

other fragment assembly algorithms that generate target-spe-

cific fragment libraries by reference to the amino acid sequence,

the Smotif libraries used by DINGO-PCS can be applied to any

target protein. Therefore, the DINGO-PCS algorithm is inde-

pendent of amino acid sequence or availability of 3D structures

of homologs or orthologs, making it universally applicable to

any protein topology including artificially designed proteins. To

demonstrate this point, native Smotifs were excluded from the

search in the context of this publication.

In the following we demonstrate the performance of the

DINGO-PCS algorithm for ten different proteins ranging from

100 to 224 residues, including a large 218-residue, 7-transmem-

brane (7-TM) a-helical microbial membrane protein, the photo-

tactic receptor sensory rhodopsin II (pSRII) from Natronomonas

pharaonis, where experimental PCSs were measured from four

different metal centers (Crick et al., 2015). In addition, we assess

the performance of the DINGO-PCS algorithm with a range of

proteins of different fold architecture, including membrane-

bound, a-helical, b barrel, and a/b topologies, using simulated

PCS data. Nine out of ten target structures were well reproduced

by the algorithm.

RESULTS

DINGO-PCS Performance on the Integral Membrane
Protein pSRII
The DINGO-PCS algorithm was first tested with the struc-

ture determination of the 7-TM a-helical protein pSRII from

Natronomonas pharaonis. The final calculated structure was

selected based on the Smotif assembly that best fits the exper-

imental PCSs, using the score function in Equation 2 (see Figures

4 and 5 and the Experimental Procedures section for a detailed

description of the algorithm and Smotif assembly). It consists



Figure 1. Smotif Assembly Performed by DINGO-PCS on the Integral Membrane Protein pSRII

(A) Cartoon representations of the final model superimposed onto the crystal structure (in gray) and of the parent proteins from which the Smotifs were derived.

The respective parent proteins are labeled with their PDB identification code. The Smotifs of the parent proteins and in the final structure are highlighted by

corresponding coloring.

(B) Same as (A), except that the Smotifs of the rhodopsin family were excluded from the library.

(C) Similarity between the sequences of the assembled Smotifs and the native sequence of the target. The model sequence was generated by concatenating the

sequences from the individual Smotifs. Target A contains rhodopsin homolog sequences, whereas target A* excludes them. Similar amino acid types are

highlighted in red and framed in blue. The sequence alignment was generated manually.
of six individual Smotifs (Figure 1A) and has a Ca root-mean-

square deviation (RMSD) of 1.9 Å to the crystal structure (Royant

et al., 2001), which drops to 1.0 Å without the C-terminal seventh

helix. This quality is remarkable, considering that PCSs pre-

sented the only experimental data in the structure calculation

and were available for only 66% of the residues and, further-

more, the native structure and any close homologs had been

excluded from the Smotif library by design. The RMSD values

mentioned throughout the text were calculated for the residues

covered by Smotifs only, unless explicitly stated otherwise.

Five out of the six assembled Smotifs stemmed from structural

homologs of the sensory protein rhodopsin, specifically from

bacteriorhodopsin structures of Halobacterium salinarum and

its mutants (PDB: 1TN5, 2EI4, 1E12, 3VHZ). Even in an alignment

of only the segments of regular secondary structure, the amino

acid sequences of the Smotifs used to calculate the structure

and the actual amino acid sequence of the target protein shared

only 26% identity (Figure 1C).

The top six models identified by the scoring function of Equa-

tion 2 displayed Ca RMSDs ranging between 1.9 and 2.2 Å to

the reference crystal structure (Royant et al., 2001). In all cases,
the assembled structures derived most Smotifs from the

CATH superfamily of rhodopsin 7-TM helix proteins (CATH ID

1.20.1070.10). This CATH class is populated with structural ho-

mologs of the target protein. To increase the stringency of the

test, we removed all Smotifs from this superfamily for the assem-

bly and recalculated the structure of pSRII with the same PCS

data. The structure assembled from these data (Figure 1B) had

a Ca RMSD of 4.9 Å to the reference crystal structure (Royant

et al., 2001). In this calculation, none of the parent proteins

were rhodopsins and the Smotifs originated from a very diverse

set of proteins from archaea, prokaryotes, and eukaryotes.

Specifically, the PDB IDs of the Smotifs selected for the final

structure were, starting from the N terminus: PDB: 2FZF (a hypo-

thetical protein from Pyrococcus furiosus), PDB: 1TL8 (a DNA

topoisomerase from Homo sapiens), PDB: 1F7U (arginyl-tRNA

synthetase from Saccharomyces cerevisiae), PDB: 2K74 (inte-

gral membrane enzyme DsbB from Escherichia coli), PDB:

2FON (acyl-CoA oxidase from Lycopersicon esculentum), and

PDB: 2PYB (Napa protein from Borrelia burgdorferi). The

sequence identity of the final assembled structure to the resi-

dues in the respective secondary structure elements was only
Structure 25, 559–568, March 7, 2017 561



Table 1. Performance Benchmark of the DINGO-PCS Algorithm

Targets PDB: Nres
a Nres in Smotifs Ca RMSDb (Å) Q-Factorc BMRB:

A (pSRII) 1H68 218 181 1.9 Å 0.12 16678

A* (pSRII) 1H68 218 178 4.9 Å 0.20 16678

B (ERp29-C) 2M66 106 67 3.3 Å 0.14 4920

C (OmpX) 2M06 148 86 2.1 Å 0.15 18796

D (polyketide cyc-like protein) 2M47 157 92 5.6 Å 0.21 18989

E (peptidyl-tRNA hydrolase) 2Z2I 179 98 3.3 Å 0.18 7055

F (human leukocyte function-associated

antigen-1)

1DGQ 188 91 5.0 Å 0.18 4553

G (Talin, C-terminal actin binding site) 2JSW 189 137 4.5Å 0.32 15411

H (Pactolus domain-1) 2IUE 212 104 5.3 Å 0.31 7313

I (STARD6) 2MOU 220 103 3.5 Å 0.21 19952

J (adhesion protein delta-Bd37) 2LUD 224 NA Fail NA 18517

*Excludes structural homologs.
aNumber of amino acid residues.
bThe Ca root-mean-square deviation (RMSD) was calculated between the best Smotif assembly calculated by DINGO-PCS, which was identified as

the structure best fulfilling the PCS data, and the Smotif residues in the corresponding reference structure.
cThe Q-factor was calculated as the RMSD between experimental and back-calculated PCSs divided by the RMS of the experimental PCSs.
4.5% (Figure 1C). This result demonstrates that DINGO-PCS can

identify the topologically correct Smotifs even in the absence of

structural homologs.

DINGO-PCS Performance Benchmark
We benchmarked the performance of the DINGO-PCS algorithm

using a set of nine additional proteins. Only PCSs that could

realistically be measured experimentally were used to assemble

the Smotifs and no other data. The quality of Smotif assemblies

varied between different the different benchmark proteins, with

the Ca RMSDs ranging between 1.5 and 5.6 Å with respect to

the respectiveNMRorX-ray reference structure (Table 1). Figure 2

depicts superpositions of the Smotif assemblies of the targets

with their 3D reference structures. The Q-factor metric offers an

alternative way to assess structural quality (Bax, 2003), which pe-

nalizes less heavily for outlying residues than the RMSD metric

and, in the absence of a reference 3D structure, allows ranking

the Smotif assemblies that best define the observed PCSs. The

Q-factors of the different target proteins ranged from 0.12 to

0.32 (Table 1), indicating very good agreement of the PCS data

with the structural models (Cornilescu et al., 1998).

All targets except targets D and J were successfully assem-

bled with RMSD values below 5.0 Å to their corresponding

reference structures. The relatively large RMSD value observed

for target D (5.6 Å) arose primarily from an incorrect orientation

of the N-terminal b sheet (Figure 2D). For target J, the Smotif

assembly failed beyond the first pair of secondary structure

elements (Figure 2J). While the first Smotif comprising residues

104–121 and 132–149 had a low RMSD of 2.5 Å to the native

structure, no hit was found in the library for the next Smotif

(residues 77–91 and 104–121) within the specified PCS and

RMSD thresholds (see the Experimental Procedures). An

explicit search in the library for the presence of native-like

Smotifs for target J revealed no entry within 3.0 Å RMSD of

the native structure. Therefore, progression in the assembly

of this target was derailed by the absence of this key Smotif

in the database.
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We also tested the DINGO-PCS algorithm with reduced PCS

datasets. For example, targets A, C, G, and H were tested by

restricting the PCS data to three metal centers and two para-

magnetic metals per center, corresponding to a 62% reduction

in PCS data. For targets A, C, and G, DINGO-PCS was found

to perform equally well when compared with Smotif assemblies

using PCS data from fourmetal centers (Figure S1 and Table S1),

but target H failed to complete the Smotif assembly as the

DINGO-PCS algorithm correctly assembled only six out of ten

Smotifs.

All-Atom 3D Structures
The Smotif assemblies produced by DINGO-PCS are devoid

of coordinates of side-chain atoms and loop regions. How-

ever, starting from the assembled Smotif structure, the missing

atoms can easily be filled in either by a comparative modeling

algorithm or by an ab initio fragment assembly algorithm

(see the Experimental Procedures). Figures 3A and 3B show the

result obtained by using Rosetta’s comparative modeling

(RosettaCM) protocol applied to targets A and B. The top five

models for targets A and B, ranked using Equation 3, showed Ca

RMSD values over all residues ranging between 2.6 and 3.4 Å

to the reference structure (Royant et al., 2001) for target A and

2.6–3.8 Å to the reference structure (Yagi et al., 2013a) for targetB.

Smotif assemblies with Ca RMSDs greater than 4.0 Å are

not suitable templates for comparative modeling. Nonetheless,

such Smotif assemblies can be used to improve the sampling

in ab initio fragment assembly algorithms such as iterative

GPS-Rosetta (Pilla et al., 2016). This is illustrated by target A*,

where the Smotif assembly produced an RMSD of 4.9 Å from

the reference crystal structure (Royant et al., 2001). Two different

types of restraints were derived from the Smotif assembly of

target A*. First, fragment libraries were populated with frag-

ments from the Smotifs of the assembled structure by translating

the coordinates into the format of Rosetta’s 9- and 3-residue

fragments to replace the first 20 entries in the standard frag-

ment libraries. Next, a distance constraint map was generated,



Figure 2. Superpositions of the Backbone

Structures of the Best Smotif Assem-

blies Calculated with DINGO-PCS, Shown

in Red, onto the Corresponding Reference

Structures, Shown in Gray

The best Smotif assemblies were identified as the

assemblies best fulfilling the PCS data. The targets

are labeled as in Table 1 (See also Figure S1 and

Table S1).
which identified the pairs of amino acid residues located within

3.5–7.5 Å in the Smotif assembled structure. The Smotif-

enhanced fragments and the constraint map were combined

with the PCS data from multiple metal centers as input for

the iterative GPS-Rosetta algorithm (Pilla et al., 2016) to obtain

all-atom models. The models were ranked using Equation 3.

The Ca RMSDs (over all residues) of the top five models to

the reference structure (Royant et al., 2001) were within

2.5–3.3 Å (Figure 3C). The complete result of the PCS-driven

iterative resampling GPS-Rosetta algorithm is shown in Fig-

ure S2. The incorporation of Smotif-derived fragments and

the constraint map drastically improved the sampling of good

quality structures. To demonstrate this, we generated two

sets of 3,000 structures each following the GPS-Rosetta algo-

rithm, first using the Rosetta standard nine- and three-residue

non-homologous fragment libraries, and second using the

combined Smotif-enhanced fragment library and Smotif-

derived restraints. The probability plots depicting the change

in the quality of structures sampled by the introduction of Smo-

tif-derived restraints are shown in Figure 3D. The median Ca

RMSD (over all residues) of the distribution (Figure 3D) shifted

from 13 Å without Smotif-derived restraints to 6 Å with Smo-

tif-derived restraints.
DISCUSSION

Historically, structure prediction algo-

rithms were developed to solve the

structures of small proteins, which can

be assembled from short fragments. In

the case of Rosetta, the fragments are

at most nine residues long. Structure

predictions of small proteins have been

very successful. Large proteins, how-

ever, resist the current computational

approaches as the increase in protein

size is coupled with a very large expan-

sion of conformational space, which

becomes correspondingly difficult to

explore. Various iterative methods such

as identification and resampling of struc-

tural features during fragment assembly

in Rosetta (RASREC) (Lange and Baker,

2012) and combination of short mo-

lecular dynamics simulation with Rosetta

sampling (Lindert et al., 2013) have

been proposed to combat the sampling

problem. These different approaches still

require an enormous amount of compu-
tational time (in the order of 105 CPU hr), yet yield good struc-

tures for only 70% of the targets (van der Schot et al., 2013).

Our present work shows that the sampling problem can be

overcome by replacing short fragment libraries by a saturated

Smotif library and using DINGO-PCS to assemble the correct

Smotifs with the help of overlapping PCS datasets from multi-

ple metal centers.

Identification of correct Smotifs is crucial and incorporation of

any false positives, especially during early stages of assembly,

quickly propagates the error, leading to premature termination

of the whole assembly. The identification of correct Smotifs

depends on two major factors. Firstly, the secondary structure

prediction of the target sequence must be accurate. This can

be improved with the inclusion of backbone chemical shift infor-

mation, but the accuracy is still limited to 89% (Shen and Bax,

2013). Adding an uncertainty to the termini of the secondary

structure elements in a Smotif only partially overcomes the inac-

curacies, since short secondary structure elements of less than

five residues are omitted from the library, as they do not carry

enough PCS data for identification as correct Smotifs. Second,

although targets with short secondary structure elements (five

to ten residues) carry enough PCSs to estimate the Dc tensors

accurately, sufficient coverage with sizable PCSs from different
Structure 25, 559–568, March 7, 2017 563



Figure 3. All-Atom 3D Models Generated

from Smotif Assemblies

(A) Superposition of the five best RosettaCM

models (selected for best fit of the PCS data),

shown in green, onto the reference crystal struc-

ture, shown in gray, for target A.

(B) Same as (A) but for target B.

(C) Superposition of the five best iterative GPS-

Rosetta models, shown in red, onto the reference

crystal structure, shown in gray, for target A*.

(D) Probability plots illustrating the conformational

sampling bias created by incorporating Smotif-

derived restraints from target A*. Results from

GPS-Rosetta sampling without and with Smotif-

derived restraints are shown in gray and blue,

respectively. The vertical lines identify the respec-

tive medians (See also Figure S2).
metal centers is required for fitting Dc tensors of sufficient accu-

racy to fall within the specified thresholds.

The DINGO-PCS algorithm aims to position and orient Smotifs

uniquely in 3D space, and, by analogy with the GPS principle,

PCS data from three metal centers may suffice. We tested this

hypothesis on targets A, C, G, and H. Indeed, the Smotif assem-

blies were of similar or even marginally better quality when

compared with assemblies performed with PCS data from four

metal centers and fourmetal ions per center (Figure S1 and Table

S1). Only for target H, did reduction of the number of metal sites

from four to three allow identification of only six out of ten

Smotifs, and the assembled structure had an RMSD of 8.1 Å to

the reference structure. In this case, increasing the PCS datasets

from two metals per centers to four metals per center (12 PCS

datasets) improved the structural quality to 3.5 Å RMSD, but

without increasing the number of assembled Smotifs. As a final

test, we also ran the Smotif assembly using PCS data from

four metal centers and two metals per center (eight PCS data-

sets). This led to a small improvement in the structure (3.2 Å

RMSD) but still failed to complete the assembly with only six

out of ten Smotifs completed. These results indicate that PCS

constraints from multiple metal ions at the same metal position

do not add substantially new information. Target H is similar in

size to targets A, C, and G, but spans over 11 secondary struc-

ture elements (10 Smotifs), where 8 of the 11 secondary structure

elements are short, ranging from 6 to 11 residues. As short

Smotifs require a larger number of sizable PCSs for accurate

positioning and orientation, this may explain the difficulties of

assembling target H. Indeed, targets A, C, and G have longer

Smotifs, which provide the required coverage and PCS magni-

tudes to derive sufficient information from three metal centers.

PCSs by themselves present exceptionally useful restraints for

Smotif identification and assembly, more than other types of

NMR data such as sparse residual dipolar couplings (RDCs),

paramagnetic relaxation enhancements (PREs) or NOEs. Using

RDCs, the lack of distance information in the alignment tensor
564 Structure 25, 559–568, March 7, 2017
would make the selection of Smotifs

ambiguous. PRE and NOE effects are

both relatively short range and therefore

would require large datasets to identify

the best Smotifs, which can be difficult
to obtain. In contrast, PCSs of backbone amide protons are

sufficient for DINGO-PCS. Such PCS datasets can easily be es-

tablished from sensitive NMR experiments that can be recorded

even for proteins with poor solubility, adding to the usefulness of

the method.

Although the DINGO-PCS algorithm exhaustively enumer-

ates the Smotif library, it is computationally inexpensive. For

example, it took a mere 50 CPU hr or 30 min on a 128-processor

cluster to assemble all Smotifs for target A. This is in stark

contrast to GPS-Rosetta, which took 28,000 CPU hr to achieve

the same result (Pilla et al., 2016). Notably, however, DINGO-

PCS takes longer to enumerate the Smotifs for targets with

smaller Smotifs (fewer than ten residues per secondary structure

element). For target B, it took 3,000 CPU hr to assemble the

Smotifs, but GPS-Rosetta still took 12,000 CPU hr for this target

(Pilla et al., 2016). The more the Smotif libraries are populated

with a large number of small Smotifs, the more CPU time is

required for exhaustive enumeration of the library. Therefore,

DINGO-PCS is better suited for structure calculations of proteins

with longer secondary structure elements. TheDINGO-PCS soft-

ware package can be downloaded free from https://github.com/

kalabharath/DINGO-PCS and the precompiled universal Smotif

libraries are freely available from http://comp-bio.anu.edu.au/

huber/Smotifs/.

Conclusion
In conclusion, we established a new method to calculate

structures of large proteins using PCSs as the only experi-

mental data. The DINGO-PCS algorithm relies on multiple

PCS datasets from site-specifically attached metal tags to

identify and assemble Smotifs. We benchmarked the method

on a set of ten different proteins with 100–220 residues. For

nine out of ten targets, the DINGO-PCS algorithm was consis-

tently successful in assembling all of the constituent Smotifs of

the targets. Low Q-factor values ranging from 0.12 to 0.32 pre-

sent an objective criterion to judge the quality of the final

https://github.com/kalabharath/DINGO-PCS
https://github.com/kalabharath/DINGO-PCS
http://comp-bio.anu.edu.au/huber/Smotifs/
http://comp-bio.anu.edu.au/huber/Smotifs/


Figure 4. Flowchart Describing the Various

Steps Involved in the DINGO-PCS Algorithm
structures with respect to the input PCS data and indicate very

good agreement.

EXPERIMENTAL PROCEDURES

Secondary Structure Assignment of the Target Proteins

Accurate secondary structure assignment of the target proteins is the essential

first step, as incorrect assignment can alter the number of Smotif definitions.

The secondary structure assignments of the target proteins were obtained us-

ing the TALOS-N server (Shen and Bax, 2013). TALOS-N uses backbone

chemical shifts to predict torsion angles and results in 89% correct secondary

structure assignments. To further decrease possible mis-assignments in the

secondary structure prediction, the length of every discrete secondary struc-

ture element was varied up to two residues at either end.

3D Assembly of Individual Smotifs to Near-Native Geometry as

Orchestrated by DINGO-PCS

Figure 4 shows a flowchart of the DINGO-PCS algorithm. The secondary struc-

ture assignment of the target protein is used to delineate the Smotifs of the

target. The Smotifs are ranked by the amount of PCS data they explain. A

search sequence is generated by starting from the Smotif associated with

the largest number of PCSs. The next overlapping Smotif is chosen based

on the number of PCS data available for it, resulting in either N- or C-terminal

extension of the initial Smotif. The Smotif assembly is performed in two stages,

(1) identifying the initial Smotif and (2) extending the initial and, subsequently,

following Smotifs.
Stage 1: Identifying the Initial Smotif

To allow for errors of secondary structure assign-

ment in the termini, each secondary structure

element is used in 11 different permutations

(1, 0), (2, 0), (�1, 0), (�2, 0), (0, 1), (0, 2), (0, �1),

(0, �2), (�1, �1), (1, 1), and (0, 0), where the first

and second numbers, respectively, give the addi-

tion/truncation of residues at the N and C termini.

For the initial Smotif with two secondary structure

elements, this leads to a total of 121 combinations

to be tested. All Smotif entries in the combination

are exhaustively searched and Dc tensors are

fitted to identify the potentially correct Smotifs.

Each Dc tensor fit requires determining eight

tensor parameters, namely the coordinates of the

paramagnetic center (x,y,z coordinates), axial

and rhombic components of the Dc tensor, and

three Euler’s angles (a,b,g) that define the orienta-

tion of the tensor frame relative to the frame of the

protein or Smotif. If the metal center is known, the

Dc tensor fit becomes a linear least square-fitting

problem that is very fast to compute. To fit the

Dc tensor, DINGO-PCS restricts the locations of

the metals by constructing a series of 40 concen-

tric spherical shells with a step size of 1.0 Å and

a maximum radius of 40 Å (illustrated in Figure 5A).

The metal positions are confined to the spherical

shells. The innermost shell is represented by 200

equidistant points and the number of points in-

creases linearly by 200 with the number of shells.

These concentric shells are centered on the center

of mass of the assembled Smotif.

All entries from the 121 possible secondary

structure combinations are exhaustively enumer-

ated, and the Dc tensors are independently fitted
for each metal center. An Smotif is considered a potential hit if it passes

through the following three filters. Filter 1: the back-calculated and input

PCSs must agree within an error threshold of 0.05 ppm, as calculated by the

following score of fit quality:

PCS Fit ðFÞ=
Xmetal centers

 PN½PCSobserved � PCSexperimental �2ffiffiffiffi
N3

p
3 ðN� KÞ

!
; (Equation 2)

whereN is the total number of PCSs available andK is the total number of fitted

parameters per metal center. Filter 2: the magnitudes of the axial and rhombic

components of all Dc tensors are within ±150 3 10�32 m3. These boundaries

aid in the filtering of incorrect Smotifs, especially when the PCSs are small or

few PCSs are available, which can be fitted by unrealistic Dcax and Dcrh pa-

rameters. The fixed tensor magnitudes also help to exclude non-ideal tensor

magnitudes being included. Filter 3: the Dc tensor fits from at least two metal

centers pass the filters 1 and 2.

All the hits are ranked according to their total PCS fit score, F, and the top

100 hits (or a user-defined number of hits) are taken to the next stage. These

hits are screened for sequence redundancy and only Smotifs of non-redun-

dant amino acid sequence are taken further.

Stage 2: Extending the Smotif Assembly

The next Smotif is the Smotif that (1) can extend the initial Smotif at either end

and (2) is characterized by the largest number of PCSs available for the over-

lapping secondary structure segment from any combination of twometal tags.

If Smotifs at either end of the initial Smotif are characterized by the same
Structure 25, 559–568, March 7, 2017 565



Figure 5. Schematic Illustration of Smotif Assembly by the DINGO-PCS Algorithm, Depicted for Target B

(A) The first Smotif is selected by positioning paramagnetic metal centers on concentric shells centered at the center of mass of the Smotif, and scanning for the

Smotif and metal positions that best fulfill the PCS data.

(B) The next Smotif must first pass an RMSD filter. The remaining Smotifs are trialed by appending the coordinates of the non-overlapping secondary structure

element to the previous Smotif assembly.

(C) The assembly is evaluated for the best Dc tensor fit as in (A).

(D) Steps (B) and (C) are repeated for the all Smotifs in the target.

(E) Comparison of the assembly that best fits the PCS data to the native protein.
number of PCSs, the direction of chain growth is decided by the number of

PCSs available for the next Smotif. The four-step approach described under-

neath is followed to assemble the sequence of Smotifs.

Step 1: In this step, the length of the secondary structure element shared

between the previous Smotif and the current Smotif is fixed, while the other

secondary structure element in the current Smotif is varied by 11 possible

combinations.

Step 2: By definition, Smotifs come in overlapping pairs, and this enables

us to filter out non-overlapping Smotifs without evaluating them for PCS

fitting. No RMSD greater than 2.0 Å is accepted for the overlapping secondary

structure element. The Newton-Raphson quaternion-based RMSD calculation

algorithm (Liu et al., 2010), which is capable of calculating 7,000 RMSDs/s, is

utilized in this step for rapid filtering of Smotifs. The surviving Smotifs are taken

to the next step.

Step 3: In this step, the newly identified Smotif is translated to the coordinate

frame of the previous Smotif and the coordinates of the common secondary

structure element in the current Smotif are discarded. The coordinates and

PCSs of the non-overlapping secondary structure element are appended to

the previous Smotif. The assembly is filtered for any backbone clashes with

other secondary structure elements. Those that pass this filter are further prop-

agated to the next step.

Step 4: In this final step, a newset of concentric spherical grid points is gener-

ated as described in the previous section (Stage 1) to restrict themetal position

and fit newDc-tensor parameters that also account for the newly added PCSs.

The three filters described for Stage 1 are reapplied, and newhits that satisfy all

three filters are propagated for the next round of selection of Smotifs. The pro-

cess is repeateduntil all Smotifs of the target protein havebeenassembled. The
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schematic representation of Smotif assembly is illustrated in Figure 5. DINGO-

PCS is a genetic algorithm, where a population of Smotifs is evaluated and

propagated in each stage. If no Smotifs survive the filters in any given stage,

the assembly is terminated and marked as incomplete.

The completed Smotif assemblies are ranked based on their quality of PCS

fit (Equation 2), and the best-fitting Smotif assembly is reported as the final

model. The PCS quality can vary dramatically from the first-ranked Smotif as-

sembly to the second-ranked assembly. Therefore only the best-rankedmodel

is reported.

Even if PCSs are available from four different metal centers, they are not

utilized all at once. In the first few steps, while less than 25% of the Smotifs

assembly of the target has been completed, the algorithm accepts assemblies

that satisfy the PCS data from at least two metal tags. For 25%–75% comple-

tion of the assembly, datasets from at least three tags need to be satisfied,

with higher ranking given to Smotifs that satisfy PCS data from four tags.

From 75% of the assembly onward, the data from all four tags are expected

to be satisfied.

PCS Data

Experimental PCS Data

At present, there are only two proteins for which PCS datasets from four

different metal centers have been published. These are pSRII, which is a

7-TM a-helical integral membrane protein containing 218 residues (Gautier

et al., 2010; Crick et al., 2015) and the C-terminal domain of the ER protein

29 (ERp29-C), which contains 106 residues (Yagi et al., 2013a).

pSRII is a good example for the DINGO-PCS algorithm. The PCSs for this

protein were obtained using C2 lanthanide tags (Graham et al., 2011) ligated



to the four different single-cysteine mutants L56C, I121C, S154C, and V169C.

Residues 56 and 121 are in the extracellular loop regions of the membrane

protein, S154 is on the cytosolic side, and V169 is in the transmembrane re-

gion. A total of 737 PCSs have been reported with Dy3+, Yb3+, Tb3+, and

Tm3+ in a membrane-mimicking micelle environment with an experimental

error of 0.02 ppm, but only 66% of the residues have at least one measured

PCS value (Crick et al., 2015).

For ERp29-C, 212 PCSs have been reported for Tb3+ and Tm3+ at four

different sites (Yagi et al., 2013a), using iDASH tags (Swarbrick et al., 2011;

Yagi et al., 2013b) ligated to the mutants C157S/S200C/K204D, C157S/

A218C/A222D, and C157S/Q241C/N245D, and the C1 tag (Graham et al.,

2011) ligated to the wild-type protein.

Simulated PCS Data

As no experimental PCS data are available for the other benchmark proteins,

datasets were generated by mimicking real experimental conditions, computa-

tionally grafting the C2 tag (Graham et al., 2011) onto the target structure at

four randomly chosen solvent-exposed residues. For each site, a rotamer library

was generated for the tag to sample all physically possible 3D conformations of

the C2 tagwithout steric clashes to the protein, and a single rotamer was picked

randomly to define the coordinates of the metal position of the Dc tensor. Euler

angles,whichdetermine theorientationof theDc tensor framerelative to thepro-

tein frame, were also chosen randomly. PCS data were generated only for Dy3+,

Tb3+, Tm3+, and Yb3+, using the Dcax and Dcrh values determined by fitting the

PCS datameasured for the L56Cmutant of pSRII (Crick et al., 2015) to the pSRII

crystal structure (Royant et al., 2001). PCS data were generated only for the

backbone amide protons using PyParaTools (Stanton-Cook et al., 2011). No

PCSs were attributed to spins within 12 Å from the metal centers to account

for the loss of signal due to PREs. A random error of ±0.04 ppm, which is twice

the SD obtained in the Dc tensor fits for pSRII, was added to all PCS data.

PCSs larger than±1.4ppmweredeleted,as theywerenotobserved in theexper-

imental data for pSRII. To mimic the sparseness observed in experimental

datasets, PCSs were randomly deleted from each of the datasets until the total

coverage was no more than 60%. In total, the four metal centers, each carrying

four different lanthanide metals, resulted in 16 datasets.

Generating Smotif Libraries

A custom Smotif library was designed and generated using the CATH 3D

structural database (Sillitoe et al., 2015). Specifically, we used the CATH data-

base 4.0. Within the database, the S100 dataset, which exclusively contains

3D structures without sequence redundancy, was utilized to generate the

Smotif libraries. The dataset contained 63,864 domain files in PDB format.

The program STRIDE (Frishman and Argos, 1995) was used to define the

secondary structure elements for all CATH domains. The secondary structure

elements were represented by one of two letters, E for b strands and H for he-

lices, including a helices, 310 helices, and the P helix. For building the Smotif

database, the 3D coordinate files were further simplified by removing all side-

chain atoms, while backbone amide hydrogens were added to all domains

using the pdb2gmx program from the Gromacs software package (Van Der

Spoel et al., 2005). Proline residues in the Smotifs were modified by adding

a pseudo-hydrogen to the backbone amide, to avoid the loss of data, if the cor-

responding residue in the target protein is a non-proline residue. The custom

Smotif database was then constructed by ensuring that each secondary struc-

ture element in a Smotif is at least five residues in length and that the Smotif is

free of loop residues. The omission of loops between secondary structure

elements ensures that a large number of entries can be screened for any given

Smotif definition. The Smotifs were binned into individual files based on the

length of their respective secondary structure elements. For example, all

Smotifs with 2 a-helical secondary structure elements consisting of 20 and

30 residues were collected in a file labeled as ‘‘hh_20_30.db’’. Each bin was

screened again for the presence of any structurally redundant entries, where

redundancy was defined by an RMSD below 0.07 Å between any given pair

of Smotifs. Only Smotifs above this cutoff value were retained in the database.

The final Smotif library consisted of 2,707 binned files with a total of 435,889

Smotif entries.

Generating All-Atom Models

As the Smotif assemblies contain only coordinates of backbone atoms and no

loops, they can easily be transformed into all-atom models. We applied two
different methods, using (1) the assembled Smotifs as structural templates

for comparative modeling and (2) translating the assembled Smotifs into short

fragments in Rosetta format and completing the assembly by the iterative

GPS-Rosetta protocol (Pilla et al., 2016).

Comparative Modeling Using Rosetta

Using the assembled Smotifs as structural templates, 1,000 models were built

using the RosettaCM protocol (Song et al., 2013). These models were further

refined using the Rosetta Relax protocol (Conway et al., 2014), generating

10,000 models. The top five models were selected based on their best fit

to PCS data, ranked using Rosetta’s inbuilt PCS energy scoring function

(Schmitz et al., 2012):

PCS Energy ðEÞ=
Xmetal centers

0
@Xmetals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
ðPCSobserved � PCSexperimentalÞ2

r 1
A ;

(Equation 3)

where N is the total number of available PCSs observed for the lanthanide

metal ion.

PCS-Driven Iterative Resampling Using GPS-Rosetta

The assembled Smotif coordinates were translated into 9- and 3-residue frag-

ment libraries in the format used by Rosetta’s ab initio structure determination

protocol. To maintain diversity in the library, only 20 of the fragments in the

native library were replaced with Smotif-derived fragments. Furthermore,

additional distance restraints were implemented on residue pairs separated

by 3.5–7.5 Å and located in different secondary structure elements. The Smo-

tif-derived fragment libraries along with PCS data were used to run the PCS-

driven iterative resampling protocol of GPS-Rosetta for a total of ten iterations

(Pilla et al., 2016), generating a total of 24,000 structures. The pairwise dis-

tance restraints between residues in different secondary structure elements

were only used for the first five iterations and turned off for the following five

iterations. The final models were selected from the structures generated in

the tenth iteration based on their best fit to PCS data, scored using Equation 3.
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