
REVIEW

Better together: Elements of successful

scientific software development in a

distributed collaborative community

Julia Koehler LemanID
1,2☯*, Brian D. WeitznerID

3,4,5,6☯*, P. Douglas Renfrew1, Steven

M. Lewis7,8,9, Rocco Moretti10, Andrew M. Watkins11, Vikram Khipple Mulligan1,4,5,

Sergey Lyskov3, Jared Adolf-Bryfogle12, Jason W. Labonte3,13, Justyna Krys14,

RosettaCommons Consortium¶, Christopher Bystroff15, William Schief12,

Dominik Gront14, Ora Schueler-Furman16, David Baker4,5, Philip Bradley17,

Roland Dunbrack18, Tanja Kortemme19, Andrew Leaver-Fay7, Charlie E. M. Strauss20,

Jens Meiler21,22,23,24, Brian Kuhlman7, Jeffrey J. GrayID
3*, Richard Bonneau1,2,25,26*

1 Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States of

America, 2 Dept of Biology, New York University, New York, NY, United States of America, 3 Dept of

Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America,

4 Dept of Biochemistry, University of Washington, Seattle, WA, United States of America, 5 Institute for

Protein Design, University of Washington, Seattle, WA, United States of America, 6 Lyell Immunopharma,

Seattle, WA, United States of America, 7 Dept of Biochemistry and Biophysics, University of North Carolina at

Chapel Hill, Chapel Hill, NC, United States of America, 8 Dept of Biochemistry, Duke University, Durham, NC,

United States of America, 9 Cyrus Biotechnology, Seattle, WA United States of America, 10 Dept of

Chemistry, Vanderbilt University, Nashville, TN, United States of America, 11 Dept of Biochemistry, Stanford

University School of Medicine, Stanford CA, United States of America, 12 Dept of Immunology and

Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America, 13 Dept of Chemistry,

Franklin & Marshall College, Lancaster, PA, United States of America, 14 Dept of Chemistry, University of

Warsaw, Warsaw, Poland, 15 Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United

States of America, 16 Dept of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine,

Hebrew University of Jerusalem, Jerusalem, Israel, 17 Fred Hutchinson Cancer Research Center, Seattle,

WA, United States of America, 18 Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA,

United States of America, 19 Dept of Bioengineering and Therapeutic Sciences, University of California San

Francisco, CA, United States of America, 20 Bioscience Division, Los Alamos National Laboratory, Los

Alamos, NM, United States of America, 21 Depts of Chemistry, Pharmacology and Biomedical Informatics,

Vanderbilt University, Nashville, TN, United States of America, 22 Center for Structural Biology, Vanderbilt

University, Nashville, TN, United States of America, 23 Institute for Chemical Biology, Vanderbilt University,

Nashville, TN, United States of America, 24 Institute for Drug Discovery, Leipzig University, Leipzig,

Germany, 25 Dept of Computer Science, New York University, New York, NY, United States of America,

26 Center for Data Science, New York University, New York, NY, United States of America

☯ These authors contributed equally to this work.

¶ Membership of the RosettaCommons Consortium is listed in the S1 List.

* julia.koehler.leman@gmail.com (JKL); bweitzner@lyell.com (BDW); jgray@jhu.edu (JJG); bonneau@nyu.

edu (RB)

Abstract

Many scientific disciplines rely on computational methods for data analysis, model genera-

tion, and prediction. Implementing these methods is often accomplished by researchers

with domain expertise but without formal training in software engineering or computer sci-

ence. This arrangement has led to underappreciation of sustainability and maintainability of

scientific software tools developed in academic environments. Some software tools have

avoided this fate, including the scientific library Rosetta. We use this software and its com-

munity as a case study to show how modern software development can be accomplished

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Koehler Leman J, Weitzner BD, Renfrew

PD, Lewis SM, Moretti R, Watkins AM, et al. (2020)

Better together: Elements of successful scientific

software development in a distributed collaborative

community. PLoS Comput Biol 16(5): e1007507.

https://doi.org/10.1371/journal.pcbi.1007507

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Published: May 4, 2020

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Funding: The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. The U.S. National

Institutes of Health software infrastructure grant

R01-GM078221 supported refactoring, testing,

documentation, and scientist training. We are also

grateful for financial support from the Alfred P.

Sloan Foundation, the Beckman Foundation, the

European Research Council (Grant 310873), the

Howard Hughes Medical Institute, the Israel

Science Foundation (grant 2017717), the National

Science Center in Poland (grant 2018/29/B/ST6/

01989), the RosettaCommons, Los Alamos

National Lab (grant LANL LDRD 20160044DR), the

Packard Foundation, the Simons Foundation, USA-

http://orcid.org/0000-0002-5693-3593
http://orcid.org/0000-0002-1909-0961
http://orcid.org/0000-0001-6380-2324
https://doi.org/10.1371/journal.pcbi.1007507
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007507&domain=pdf&date_stamp=2020-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007507&domain=pdf&date_stamp=2020-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007507&domain=pdf&date_stamp=2020-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007507&domain=pdf&date_stamp=2020-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007507&domain=pdf&date_stamp=2020-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007507&domain=pdf&date_stamp=2020-05-04
https://doi.org/10.1371/journal.pcbi.1007507
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


successfully, irrespective of subject area. Rosetta is one of the largest software suites for

macromolecular modeling, with 3.1 million lines of code and many state-of-the-art applica-

tions. Since the mid 1990s, the software has been developed collaboratively by the Rosetta-

Commons, a community of academics from over 60 institutions worldwide with diverse

backgrounds including chemistry, biology, physiology, physics, engineering, mathematics,

and computer science. Developing this software suite has provided us with more than two

decades of experience in how to effectively develop advanced scientific software in a global

community with hundreds of contributors. Here we illustrate the functioning of this develop-

ment community by addressing technical aspects (like version control, testing, and mainte-

nance), community-building strategies, diversity efforts, software dissemination, and user

support. We demonstrate how modern computational research can thrive in a distributed

collaborative community. The practices described here are independent of subject area and

can be readily adopted by other software development communities.

This is a PLOS Computational Biology Software paper.

Introduction

Tackling grand challenges in various scientific disciplines requires ideas and perspectives from

team members covering a diverse range of expertise, with sustained focus that persists over a

time frame sufficiently long to meet bold scientific objectives[1,2]. But how do you assemble a

team that can successfully work together on a shared goal over long periods of time? A recent

National Academies report[1] summarized key challenges for “team science” as including

diversity of membership, interdisciplinary knowledge integration, large size, goal alignment,

geographic dispersion, and task interdependence[1]. We share here how our team has met

these challenges. Our collective experience in the RosettaCommons consortium has been

marked by extraordinary collaboration in a team composed of smaller groups that each inno-

vate on their own projects. This teamwork is possible because our work centers around a

shared software suite. The rise of shared, distributed scientific software tools across many sci-

entific disciplines presents an opportunity for forming focused, productive research communi-

ties. In this paper, we share the key technical, social, and dissemination practices that have

enabled successful scientific software development in our collaboration, the RosettaCommons

[3]. The paper complements two recent, detailed, technical reviews about Rosetta that discuss

latest applications[4] and the state and history of the score function[5].

Computational skills are increasingly vital across a broad range of scientific disciplines.

However, few training programs in these fields include instruction in computer science[6] or

software engineering. Thus, many scientists implement their workflows in transient scripts or

programs focused only on addressing an immediate concern. These programs often lack gen-

erality, extensibility, code comments, or documentation, and can be difficult to integrate with

other methods[7]. The general lack of documentation or example workflows (“protocol cap-

tures”[8,9]) further diminishes reproducibility and usability[10,11]. In contrast, accomplishing

complex tasks and pushing scientific boundaries generally requires reuse of sophisticated, vali-

dated algorithms. Appropriately generalized, shared code can allow new, complex methods to

be built from simpler, reusable modules that combine ideas from multiple sources. We have

used such a model to develop the macromolecular modeling software suite Rosetta[4] (Fig 1).

The project’s success and longevity have relied on the cultivation of a community around the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 2 / 20

Israel Binational Science Foundation (grants

2009418, 2015207), the U.S. National Institutes of

Health (F32-CA189246; P01-U19AI117905, R01-

AI113867, R01-DK097376, R01-GM073151, R01-

GM080403, R01-GM084453, R01-GM088277,

R01-GM092802, R01-GM098101, R01-

GM099827, R01-GM099842, R01-GM110089,

R01-GM117189, R01-GM117968, R01-

GM121487, R01-GM127578, R01-HL122010,

R21-AI121799, R21-CA219847, R35-GM122517,

RL1-CA133832, RL1-GM084433, T32-AI007244,

T32-GM008403, U19-AI117905, UM1-Al100663),

the U.S. National Science Foundation (CHE

1305874, CISE 1629811, DBI-1262182, DMR

1507736), and the Washington Research

Foundation.

Competing interests: The Rosetta software has

been licensed to numerous non-profit and for-

profit organizations. Rosetta Licensing is managed

by UW CoMotion, and royalty proceeds are

managed by the RosettaCommons. Under

institutional participation agreements between the

University of Washington, acting on behalf of the

RosettaCommons, their respective institutions may

be entitled to a portion of revenue received on

licensing Rosetta software including programs

described here. Baker, Malmström, Yarov-Yarovoy,

Gront, Meiler, Whitehead, Schueler-Furman, King,

Gray, Sgourakis, Lindert, Strauss, Karanicolas,

Bonneau, Sammond, Kortemme, and Bradley are

unpaid board members of the RosettaCommons.

As members of the Scientific Advisory Board of

Cyrus Biotechnology, Baker and Gray are granted

stock options. Yifan Song, Indigo C. King, Steven

M. Lewis, Brandon Frenz, Karen Khar and Ryan

Pavlovicz are currently employed at Cyrus

Biotechnology with granted stock options. Cyrus

Biotechnology distributes the Rosetta software.

Brian D. Weitzner and Scott E. Boyken hold equity

in Lyell Immunopharma. Vikram K. Mulligan is a

co-founder of and shareholder in Menten

Biotechnology Labs, Inc. The content of this

manuscript is relevant to work performed at Lyell

and Menten. Neil P. King is a co-founder and

shareholder of Icosavax, Inc., a biotech company

developing nanoparticle vaccines. Justin B. Siegel

is a co-founder and shareholder of Digestiva, Inc.

and PvP Biologics Inc. David Baker is a co-founder,

shareholder, or advisor to the following companies:

ARZEDA, PvP Biologics, Cyrus Biotechnology, Cue

Biopharma, Icosavax, Neoleukin Therapeutics, Lyell

Immunotherapeutics, Sana Biotechnology, and A-

Alpha Bio.

https://doi.org/10.1371/journal.pcbi.1007507


codebase with the larger goal of solving complex scientific problems by sharing ideas and tools

and collaborating closely.

In addition to solving technical problems for scientific advancements, our community

established coding, publication, and community-interaction standards that enabled continued

growth and health of the software and our community over many years. We meet at least twice

a year to discuss broad changes to the codebase and to share our newest tools and the scientific

advances made with them. Additionally, we form new collaborations at these meetings and

recognize members who have made important contributions to the codebase and/or the com-

munity. To ensure rapid entry into development, we organize regular training sessions for

newcomers across the community. We created a code of conduct, which we require our mem-

bers to adhere to, regardless of their institutions. We are closely connected to our extensive

user base to further improve our software and apply it to real-world scientific problems. Our

community has changed the way we work, especially in conjunction with relatively recent

tools that allow social interaction on various levels (GitHub, Slack, video conferences).

Fig 1. RosettaCommons facts. Main laboratories and institutions in the RosettaCommons and basic facts about our software in 2019.

https://doi.org/10.1371/journal.pcbi.1007507.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 3 / 20

https://doi.org/10.1371/journal.pcbi.1007507.g001
https://doi.org/10.1371/journal.pcbi.1007507


Here we describe the social and technical elements that have shaped our software[4,12] and

community over the past two decades, including mistakes and lessons learned. We focus on

three major categories: technical aspects (e.g. version control and testing frameworks), social

cohesion (e.g. meetings, communication, inclusion and outreach), and software dissemination

(e.g. licensing, documentation, and user interaction). We believe that many of these features

(Fig 2) can be translated to other communities. Thus, we hope this review can help other

groups grapple with the many questions in performing collaborative research, from imple-

menting effective software engineering practices to balancing healthy competition with effec-

tive use of shared resources, to inclusion of diverse groups of people and practicing

transparent and inclusive decision-making strategies.

Beginnings and growth of our community

Development of our software suite started in the mid 1990s in David Baker’s laboratory at the

University of Washington (Fig 3). Rosetta was originally developed for protein structure pre-

diction and to gain insights into protein folding, which remains a grand challenge in theoreti-

cal biophysics and underlies our understanding of biology, human health and disease. The

project started when two graduate students implemented a Monte Carlo sampling algorithm

[14] and a scoring function[15] that consisted of physics-based and knowledge-based terms.

The protocol was successful in the blind prediction challenges, CASP 3[16] and 4[17]. Follow-

ing this success, several postdoctoral fellows joined the project to develop various structure

prediction and design applications.

As the early developers began independent positions at various institutions, they continued

developing and improving their modeling applications, and it became clear that enhancing

collaboration across institutions would be beneficial to scientific progress. This led to the crea-

tion of the RosettaCommons community of developers, which involved a unique intellectual

Fig 2. Pillars of success in the development of scientific software. Technical aspects are in blue, social aspects in red and dissemination and user

interaction in yellow. This figure was created with icons from The Noun Project[13].

https://doi.org/10.1371/journal.pcbi.1007507.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 4 / 20

https://doi.org/10.1371/journal.pcbi.1007507.g002
https://doi.org/10.1371/journal.pcbi.1007507


property agreement, described in the licensing section below. The RosettaCommons structure

allowed seamless collaboration across many institutions, which spurred developments in

many different directions. By 2019, the RosettaCommons has grown to laboratories at 71 insti-

tutions worldwide, overseeing a project consisting of over 3 million lines of code with contri-

butions from over 800 scientists. The code has been licensed to ~35,700 academic scientists

and 80 commercial entities.

Technical aspects

Language history of the codebase

The early codebase was written in Fortran and later machine-translated into C++ (by Objexx

Engineering), which was released in the summer of 2005 as Rosetta++ (also known as Rosetta2).

Over the next two years, the automatic translation was found to be unworkable for continued

development, and a software engineer was hired to implement the software as an object-oriented

library, called librosetta. Although the first attempt at creating an object-oriented hierarchy turned

out to be unwieldy and inflexible and ultimately had to be abandoned, it gave us insight into better

choices for our central objects and their relationships. The next object-oriented rewrite of the

codebase was initiated in the summer of 2007 by two of our core developers who were both scien-

tists and software engineers (Andrew Leaver-Fay, a member of the Kuhlman lab, and Phil Bradley,

at the Fred Hutchinson Cancer Research Center). This code was initially called miniRosetta and

would later become Rosetta3, released in early 2009[12]. MiniRosetta also remedied a design flaw

of Rosetta++ which presented as a single monolithic application with input options that allowed

many different protocols to be invoked. In contrast, protocols in Rosetta3 are typically stand-

alone applications with their own name. There are currently over 200 such applications.

Two scripting interfaces are also supported: RosettaScripts[18], which is an XML-based

interface that allows protocol development from modular building blocks without additional

Fig 3. Rosetta history. Major milestones in the history of Rosetta development.

https://doi.org/10.1371/journal.pcbi.1007507.g003

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 5 / 20

https://doi.org/10.1371/journal.pcbi.1007507.g003
https://doi.org/10.1371/journal.pcbi.1007507


compilation, and PyRosetta[19,20], which allows Python-based protocol development and

easy integration with third-party tools. The different interfaces are rooted in the Rosetta3 code-

base from 2007, which is still used, developed and maintained at the time of this writing, 12

years later. In our case, after several iterations we found appropriate reconfigurable and exten-

sible abstractions within an object-oriented programming framework in the C++ language to

achieve our scientific objectives.

Version control

In software development, version control is important both to document changes to the soft-

ware over time and to ensure that independent, parallel lines of development can be merged

into a single, unified software. Version control is especially important for large codebases with

complex dependencies of files and class hierarchies and where each revision in the main line

of development needs to compile and run.

In the mid 1990s, our developers stored versions of the codebase in cryptically-named sub-

directories. A single source code repository was created to which a single person had write per-

missions (Carol Rohl), using the then-popular Concurrent Versioning System (CVS[21]). CVS

scaled poorly as the community of developers grew, and around 2006 the community moved

to the centralized version control system Subversion (SVN[22]), which worked well for us for

many years. As the number and geographic range of developers grew and the code complexity

increased, our single SVN server became overwhelmed. Developers distant from the central

server in Seattle encountered painfully slow or impossible merges due to timeouts, or had

unsaved local changes erased. In 2013 we migrated to private repositories on GitHub[23],

which uses the Git distributed version control system. Early on, we created conventions for

interaction with GitHub (e.g. no forking, rewriting pushed commits, or force-pushing into the

master branch). The decentralized nature of Git has served the community extremely well in

supporting thousands of different development branches from all over the world that can be

relatively easily merged into the main development branch. We have since instituted addi-

tional checkpoints for merges including automated testing (see below) and requiring indepen-

dent code reviews from other developers in the community on each changeset (pull requests

and reviews–see below). Pull request reviews have enabled us to improve code quality and

reduce bugs. Administrative control of the code repository rests with senior developers, rather

than principal investigators (PIs).

Testing framework

Code testing is necessary to ensure that software runs correctly and stably in different comput-

ing environments, provides expected and reproducible output, runs within a certain time-

frame, and achieves some technical objective. Starting in 2004, we created our own testing

framework because standard software packages at the time did not provide the features we

needed. Testing has become an integral part of our software development. Because running

tests locally on various architectures and build modes is challenging and time-consuming for

individuals (see S1 Text), our framework includes a dedicated testing server on which tasks are

distributed and results are collected (Fig 4). While establishing a custom test infrastructure

might not be feasible for smaller software projects, several free and paid services are now avail-

able that are highly beneficial for scientific software (e.g. BuildBot[24], Jenkins[25], GitLab

[26], TravisCI[27]). We support the following types of tests that are described in detail in the

supplement: build tests, unit tests, integration (regression) tests, scientific tests, and others.

RosettaCommons uses licensing revenue (see “Licensing” below) to acquire and maintain the

hardware on which these tests are run.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 6 / 20

https://doi.org/10.1371/journal.pcbi.1007507


Improving code quality through code review

A requirement for collaboration and longevity of scientific software is a readable, maintain-

able, and extensible codebase as a foundation for new scientific development. In reality, how-

ever, everyone writes code differently. To create a base level of readability of the code, limit

code breakage, and make code easier to debug and extend, we agreed on a set of about 200 cod-

ing conventions[28], to which everyone in the community is expected to adhere. Although it is

challenging to strictly enforce all conventions, some are enforced by automated code quality

tests, a custom “beautifier” script that formats code according to our conventions, and a

Python-based code templating system for various common class types. Other conventions are

socially enforced through code reviews (see below).

Several software development tools and frameworks have provided us with functionality

that shaped our software development practices. We integrated features of Git and GitHub

into our testing framework, including branching, pull requests, and code reviews (see S2 Text

for workflow). A pull request is a request by a developer to merge new code from a branch into

the main repository. The requestor can tag specific people to perform a review or broadcast a

general call for reviewers. Based on the received comments, there can be multiple rounds of

revisions. When all reviewers approve the merge, a final set of tests are run and the code is

merged. This workflow is similar to software engineering industry practices and improves the

quality of code contributions while also lowering the psychological barrier for new developers

to contribute to the codebase without the worry of breaking it. In our experience, it can be

challenging to maintain code quality, especially in large, diverse communities, and interactive

code reviews have been a great benefit.

Fig 4. Software testing. Testing is essential to ensure stability and correctness of software. This is a view of our testing server dashboard for a

specific merge into the master branch of Rosetta. We continuously run a large number of tests, such as build tests, unit tests, integration tests,

performance tests, code analysis tests, and scientific benchmarks. Tags in green, red, and yellow denote test pass, failure, and currently running.

https://doi.org/10.1371/journal.pcbi.1007507.g004

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 7 / 20

https://doi.org/10.1371/journal.pcbi.1007507.g004
https://doi.org/10.1371/journal.pcbi.1007507


Interfaces to the main codebase

To facilitate participation by diverse new contributors, methods can be written in C++[12],

PyRosetta[19] or RosettaScripts[18]. The choice for the interface is often made by considering

technical details of the new method as well as the experience and comfort level of the devel-

oper. Protocols in RosettaScripts or PyRosetta (for which the C++ implementation is the com-

mon foundation) can be developed more quickly and require less technical knowledge but are

subject to API changes and are frequently not merged back into the main codebase.

The first, simplest, and most-used interface to the codebase is the command line. Other

interfaces were implemented over the years for different purposes and to facilitate custom pro-

tocol development. For example, in 2008, the Foldit video game[29,30] was released, which

uses Rosetta as a foundation and employs a graphical user interface to allow the player to

manipulate a protein structure. Major scientific concepts were adapted with a simplified termi-

nology to make Foldit accessible to a broader audience. For instance, restraints are termed

“rubber bands”, “shake” is used for rotamer optimization and design, and “wiggle” for high-

resolution refinement. The goal of the game is to achieve high scores rather than low energies.

Foldit is widely used by the general public to solve real scientific puzzles[31], as a teaching tool

for education levels from K-12 to graduate school[32], and by academic labs to gain insights

and inspire new scientific discoveries.

In 2011 Fleishman et al. introduced RosettaScripts[18], which is an XML-based interface

that allows custom protocol development by recombining and configuring existing objects. It

takes advantage of the object-oriented framework of Rosetta3[12] and allows the user to create

a new recipe without writing or compiling any C++ code. Intimate knowledge of the C+

+ codebase is not required, as the vast majority of the objects used in RosettaScripts are docu-

mented online[33]. Using RosettaScripts has been further facilitated by the XML Schema Defi-

nition (XSD) framework that identifies errors in the XML scripts at runtime, provides detailed

error messages, and is now integrated into our user-facing documentation.

While RosettaScripts is useful for protocol development, it generally lacks flow control and

detailed control of how objects can be manipulated. If these are needed and more specific con-

trol over certain objects are required for development, PyRosetta is the tool of choice. Since

the early 2000’s, the Python language has become the dominant programming language in

many scientific disciplines, including biology and chemistry; largely because it is easy to learn,

forgoes code compilation and features automatic memory and package management, while

performing better than many other scripting languages. After initial work by William Sheffler,

in 2009, Jeffrey Gray’s group at Johns Hopkins University released PyRosetta[19,20], which

enables the user to interact with nearly all underlying data structures via Python bindings

(PyRosetta exposes 87,896 C++ functions and 7,403 C++ classes at the time of this writing).

PyRosetta is for advanced users and beginning developers as it requires knowledge of the

Rosetta libraries. A graduate course about protein structure modeling with PyRosetta is taught

by Jeffrey Gray (videos are available at www.pyrosetta.org) and others in our community.

Updated workshops are available on the website, and a book describing them was published in

2009[20].

Development in the C++ codebase is necessary for optimization of new protocols and the

addition of new functionality and advanced features, such as new biomolecules or systems to

model; examples include carbohydrates, nucleic acids, or symmetric systems.

Other interfaces include the CS-Rosetta toolbox[34,35] for incorporating NMR data from

chemical shifts and residual dipolar couplings via Python wrapper tools, and InteractiveRo-

setta[36], which is a graphical user interface to PyRosetta[19].

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 8 / 20

http://www.pyrosetta.org/
https://doi.org/10.1371/journal.pcbi.1007507


Social aspects

The RosettaCommons community of developers–rewarding collaboration

The technical considerations outlined above reflect years of work and iteration by many scien-

tific developers. As in many scientific software communities, the number of computer scien-

tists and software engineers in our community is small compared to the number of scientists

with domain expertise who have acquired programming skills without formal training. Devel-

opers go beyond applying existing code to current problems in that they also develop novel

methods to address new scientific questions. By drawing from over 60 labs worldwide, the

community includes developers with backgrounds in biochemistry, chemistry, physics, biol-

ogy, computer science, mathematics, engineering, pharmacology, molecular physiology and

other, related disciplines at the undergraduate, graduate, postdoctoral, and career professional

levels (research scientists, principal investigators), and their collaborators. To fill these gaps in

expertise (inevitable due to the large scope of the code) and work effectively together, we foster

a culture that encourages communication, training, leadership, and outreach.

Achieving a robust codebase with scientific outcomes requires

collaboration

Computer scientists and software engineers (especially in commercial settings) often empha-

size correctness, code design, maintenance, readability, and performance. In contrast, aca-

demic scientists often favor rapid development of “messy” code to test a hypothesis, and

scientists without formal computer science training emphasize scientific correctness and learn

about software engineering concepts later or never. These factors lead to a codebase that is dif-

ficult to read, extend, maintain, and test, and which often performs poorly. In our community,

we actively encourage, inspire, and teach these concepts to build a culture that appreciates and

actively participates in code maintenance. To combat these barriers, sustainable software

development requires (1) periodic code maintenance and (2) a culture of appreciation for soft-

ware engineering concepts. We reinforce such a culture by giving out an annual Rosetta Service
Award, which over the past ten years has honored contributions from code refactoring, hacka-

thon leadership, diversity and inclusion efforts, and more. Anchoring these values into our

community enables us to save a lot of time, effort, and money while interacting closely with

community members allows us to implement new ideas more rapidly.

RosettaCommons membership

A central question is: who is the RosettaCommons? We seek to include all who share our sci-

entific goals to develop Rosetta to predict structures and design macromolecules. In practice,

the “community” intellectual property (IP), that is the code itself but not the products of the

software, requires a legal sign-on from individual developers and their host institutions. The

institutions and developers agree to contribute their intellectual property to the RosettaCom-

mons codebase, to provide for an environment of continuous sharing and collaborative devel-

opment for the advancement of public science. PIs are invited leaders of research groups, and

developers in those groups sign a developer agreement. Historically, new PIs have been alumni

from David Baker’s and other first-generation RosettaCommons labs. As our platform has

been used in other areas of science (e.g. cryo-EM reconstruction or nanomaterials), new mem-

bers have joined without training in specific Rosetta groups. The RosettaCommons executive

board is currently evaluating possible strategies on how to expand the RosettaCommons to

properly include the expanding set of developers.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 9 / 20

https://doi.org/10.1371/journal.pcbi.1007507


Leadership: RosettaCommons Executive Board

The RosettaCommons was established in 2001[8] to facilitate collaboration between our labo-

ratories at various institutions, and manage intellectual property and licensing of the codebase

in collaboration with the University of Washington’s technology transfer office, called UW

CoMotion. Executive decisions are made by the principal investigators either at the PI meeting
at the annual RosettaCon or via an email list. Since the RosettaCommons has grown substan-

tially, we created an executive board in 2014 to oversee the community service work from

communications to documentation, awards and budgets. PIs are elected to two-year terms for

various board positions to match their expertise or interests, except for the conference chairs

which rotate annually. The descriptions of the board positions can be found in S3 Text.

Communication

As our software is developed by many labs worldwide, constant and efficient communication

is crucial. Several mailing lists are in place for the C++ and PyRosetta developers, the PIs, test

server logs to receive updates on code breakage, the diversity committee, and a jobs list,

among others. We also have a Slack workspace for more interactive communication and for

fast support within our community. We further have a MediaWiki[37] since the early 2000’s

communicating announcements for conferences and teleconferences. Most of the documenta-

tion has moved to a Gollum wiki[38], discussed under documentation below. Users can also

ask questions on a searchable forum[39]. Monthly TeleCons allow the developers, the PIs, and

the diversity committee to communicate. The variety of communication channels serve differ-

ent purposes and further create a sense of community.

Community interaction in meetings and hackathons

The RosettaCommons spirit of close collaboration is fostered by regular meetings, the most

significant of which is the annual RosettaCon in the summer. The inaugural meeting in 2003

was similar to a lab retreat, spending a few days in the North Cascades to share new develop-

ments. The last day of the meeting has traditionally been reserved for leisure activities as an

opportunity to get to know the members of the community. Talking about science in a more

relaxed setting has been a boon to our community spirit. For many people, RosettaCon feels

more like friends solving scientific and technical problems together rather than a traditional

scientific conference.

Summer RosettaCon has grown significantly to 270 people by 2017 (Fig 5). As the audience

grew, the conference has shifted from mostly software discussion to also include scientific

developments. All attendees present their research in a poster session or talk. The quality of

the talks has increased substantially from less-formal talks (similar to group meetings) to well-

polished presentations one would expect at international scientific conferences. Speakers

range across all career levels.

In-depth code developments are discussed at PreRosettaCon (formerly called the develop-
er’s meeting) where major decisions about code maintenance, improvements, and restructur-

ing are made. These discussions can be very technical and organizational. Senior developers

typically organize the meeting, with decisions being made democratically by all attendees. We

further organize an additional meeting, WinterRosettaCon, in February (formerly called devel-
oper's meeting or MiniCon, which started in 2007) with rotating locations. Similar to PreRoset-
taCon, these meetings have been smaller and more technical, covering both technical talks as

well as discussion time for major decisions. In the last few years, however, WinterRosettaCon
has grown to include a bona fide scientific program.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 10 / 20

https://doi.org/10.1371/journal.pcbi.1007507


The community further organizes on-demand hackathons (XRWs–eXtreme Rosetta Work-
shops) for maintenance and improvement of the codebase. In these XRWs, about ten people

from different research groups meet at one location to accomplish a specific, well-defined goal.

Previous XRWs focused on improving compilation time and memory use by splitting the core

libraries (2010) and the protocol libraries (2011); improving the scorefunction (Talaris meet-

ing 2013 –this was technically not an XRW hackathon but a one-off technical meeting with

presentations and discussions); improving documentation, protocol captures, and tutorials

(2015 and 2016 –Fig 6); generalizing storage of chemical information and handling of com-

mon molecular file formats (2016); improving the handling of RosettaScripts input (2016); and

generalizing interfaces for handling non-canonical amino acids, carbohydrates, nucleic acids,

and metal-binding sites (2017). XRWs have had a tremendous impact on maintainability,

extensibility, and user-friendliness of our codebase while further enhancing community spirit

between participants.

Fig 5. Meetings. Developers meet at our annual summer conference (RosettaCon). Pictures from our second RosettaCon in 2004 (left) and the conference in 2017

(right) reflect the community’s drastic growth and increase in diversity.

https://doi.org/10.1371/journal.pcbi.1007507.g005

Fig 6. Hackathons. Organizing regular hackathons can drastically improve code maintainability, generalizability,

documentation, and interaction in the community. Our eXtreme Rosetta Workshops (XRWs) are organized annually

and have had a drastic positive impact on our software and community.

https://doi.org/10.1371/journal.pcbi.1007507.g006

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 11 / 20

https://doi.org/10.1371/journal.pcbi.1007507.g005
https://doi.org/10.1371/journal.pcbi.1007507.g006
https://doi.org/10.1371/journal.pcbi.1007507


Training for users and developers

Rosetta is written with the goal of understanding complicated molecular systems at the inter-

face between chemistry, physics, and biology. Since the software has primarily been developed

by scientists rather than software engineers, it has historically been difficult to use. The crea-

tion of various user and developer interfaces (command line, PyRosetta, RosettaScripts) is a

result of trying to address some of these challenges. In addition, our community has estab-

lished a number of workshops to make novices familiar with the use of the software suite and

its codebase as quickly as possible.

Users with a general understanding of protein science seeking an introduction to com-

monly-used protocols can follow a set of tutorials compiled by the lab of Jens Meiler and col-

laborating developers at Vanderbilt University; they supplement a manuscript describing the

main protocols[9]. These tutorials are taught twice a year at Vanderbilt[40], and are probably

the quickest way to learn how to use the software.

In 2013, we first began offering a week-long Bootcamp course (now called Code School) for

small groups of interested graduate students and postdocs in RosettaCommons laboratories.

The course covers intricacies of C++ programming and the architecture of our software librar-

ies in lectures and in-class labs. We keep a high ratio of teachers to students (~1:5) so that mul-

tiple teachers can answer questions simultaneously during the lab sessions. The course was

intended to train non-computer scientists to become senior developers and hopefully address

our gender imbalance (more below). Videos of code school lessons are available on the Roset-

taCommons YouTube channel[41]. In 2019, we added a PyRosetta Code School course, which

has an even lower barrier to entry as Python is an easier language to work with. Code Schools
directly taught by senior developers have drastically improved code quality, consistency, read-

ability, documentation, and understanding of important software engineering concepts. They

have further improved the interaction and communication within the community and helped

newcomers feel accepted.

Because gaining proficiency in software development typically takes many months to years

of training, some members move between RosettaCommons laboratories throughout their

career to apply their skills to different types of macromolecular modeling and design problems.

These individuals, often having 6+ years of experience and institutional memory, play a crucial

role in advancing and supporting the codebase, our community and training newcomers. Fur-

ther, the RosettaCommons supports two research professors (Andrew Leaver-Fay and Rocco

Moretti) who use their expertise to answer difficult technical questions and who are qualified

to make major decisions about the codebase, and an experienced senior test engineer (Sergey

Lyskov) who created and maintains the test infrastructure. Collectively, the 15–20 senior

developers, scattered across multiple labs, have comprehensive knowledge of the ever-growing

codebase and functionality of the software suite.

Diversity, Inclusion, and Outreach

Building and maintaining a strong community of collaborators requires fostering and recruit-

ing top talent. As our community grew, we noticed that our team lacked gender and racial/eth-

nic diversity and that we were missing a sizeable fraction of the talent available. We believe an

inclusive culture and a diverse membership are prerequisites to forming an ethical and just

community of scientists, so we focused on recruiting and developing the scientists we failed to

include previously.

In addition to offering Code Schools, two important first steps were instituting a Code of

Conduct[42] and forging a diversity statement[43] to capture our values and aspirations. The

Code of Conduct includes a reporting system that allows us to refer legal issues to home

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 12 / 20

https://doi.org/10.1371/journal.pcbi.1007507


institutions and to address microaggressions at conferences on-site. The diversity statement[43]

commits to making “our community inclusive and equitable for people of all backgrounds,

regardless of race, ethnicity, nationality, gender identity, sexual orientation, disability status, age,

belief system, or socioeconomic background” (see S4 Text). It also “urges the individual research

groups in our community to make every effort to proactively and swiftly eliminate discriminatory

policies and procedures in hiring and recruitment and to make efforts to increase the number of

individuals from historically underrepresented groups in the Rosetta community”.

As specific actionable items, RosettaCommons members have participated in a variety of

outreach activities that fulfill several roles: (1) educating the general public about science, (2)

sparking interest in STEM in K-12 and undergraduate students, (3) increasing diversity and

inclusivity in the RosettaCommons, and (4) crowdsourcing scientific discoveries.

Our recruitment efforts include regular attendance at conferences that aim to highlight diver-

sity in STEM fields such as the Grace Hopper Celebration of Women in Computing, the Annual
Biomedical Research Conference for Minority Students (ABRCMS), the ACM Richard Tapia Cele-
bration of Diversity in Computing, and the Society for Advancement of Chicanos/Hispanics and
Native Americans in Science (SACNAS) conference. These conferences directly strengthen our cli-

mate and culture, as solo-status[44] Rosetta scientists in their home lab meet in person with those

sharing their identities in other RosettaCommons labs and beyond, forging ties and networks that

endure past these meetings. Professional development opportunities at these conferences

empower scientists from minority groups and enlighten delegates from majority groups.

For undergraduates interested in a research experience in a RosettaCommons lab, we have

established an NSF-funded REU (Research Experience for Undergraduates) program, the

Rosetta Summer Intern Program[45]. Our program starts with a week-long Intern Code School
where students learn how to use the software, how to navigate the code, and the most impor-

tant frameworks[46]. After that week, students are able to develop basic protocols and accom-

plish specific research goals during their 8-week internship, results of which they present at

RosettaCon.

Additional activities to improve inclusion in our community have included: (1) creating an

active Diversity and Inclusion Committee (see Rosetta consortium supplement for members);

(2) data collection on conference demographics; (3) invited platform speakers at RosettaCon

to discuss diversity topics (Karen Fleming on gender equity, John Matsui on diversity 101,

Joyce Yen on leadership and measuring inclusion); (4) networking/mentoring events at Roset-

taCon for women and members of minority groups; (5) RosettaCommons climate survey and

follow-up small group discussions at RosettaCon resulting in recommendations and new

actionable items; (6) dependent-care grants to support parents to attend Rosetta meetings; (7)

conference housing matchups considering non-binary gender; (8) collecting resources for

career development and personal well-being.

Our efforts have substantially increased the number of women in a typically male domi-

nated field. Nearly 30% of RosettaCon attendees in 2017 identified as female, up from below

15% in most years before 2012 (S1 Fig). Almost 8% of attendees identify as Black, Hispanic, or

multiracial. The demographics of our core developers and PIs are much less diverse, giving us

humility and recognition that diversity efforts need to be sustained for many years to come.

We will continue our work to ensure the RosettaCommons is a universally welcoming and

supportive environment.

Public participation in science

In the early 2000s when protein structure prediction was much less tractable and compute

resources were limited, we created a distributed computing project called Rosetta@home,

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 13 / 20

https://doi.org/10.1371/journal.pcbi.1007507


through which volunteers can donate idle computer cycles for protein structure prediction,

docking, and design[47,48]. Rosetta@home was initially released in 2005 and runs on the

Berkeley Open Infrastructure for Network Computing (BOINC)[49]. Rosetta@home shows a

screensaver while performing computations when the user’s desktop or laptop is otherwise

idle. In 2015, Rosetta@home was ported to the Android operating system to run on volunteers’

cell phones and mobile devices during recharge periods, when the CPU is typically underuti-

lized[50], to perform biomolecular structure prediction tasks.

Similarly, the Human Proteome Folding Project[51] was a combined effort between two

Rosetta labs, the Institute for Systems Biology, and IBM’s World Community Grid. It was

launched in 2004 with the goal to predict protein structures in the human genome, running

for 9 years. Its successor, the Microbiome Immunity Project[52] was launched in 2017 with the

goal to predict protein structures from the human gut microbiome.

Dissemination and interaction with users

Packaging and platforms

Rosetta simulations typically require High Performance Computing (HPC) resources, which

are often public or university-owned. In response to the heterogeneity of available HPC

resources, our software must be buildable across a wide range of hardware and compute envi-

ronments. We customized the build system SCons[53] to allow users to specify system-specific

compilation settings and select a particular build mode (e.g. a Message Passing Interface (MPI)

mode for clusters that support or require it). Precompiled binary builds for 64-bit Linux and

Mac distributions are available along with weekly source code releases (since 2013). Larger,

numbered releases occur once or twice annually. The software suite runs on the three major

operating systems (Linux, macOS, and Windows through the Windows Subsystem for Linux)

and hardware architectures currently in use (x86-64 Intel/AMD chips, IBM Power architecture

[e.g. Blue Gene supercomputers], and ARM for android-based cell phones and tablets [for

Rosetta@home]). In the past, DEC Alpha, Cray, and Intel Itanium architectures were also

supported.

Webservers

One path to perform simulations as described in published manuscripts is through webservers

that present a limited number of parameters to the user. The Robetta server[54] was deployed

in 2003 and is commonly used by scientists inside and outside of our community for fragment

generation[55], domain parsing and structure prediction[56,57], alanine scanning[58], and

DNA interface scanning[59]. Individual labs have also created servers for design[60], flexible

backbone modeling and design[61], flexible peptide docking[62], and protein-protein inter-

face identification[63]. In 2013, the ROSIE server framework[64] was created to simplify set-

ting up new webservers for Rosetta applications. As of 2019, ROSIE hosts 21 modeling

protocols, has>7,300 registered users and has run>75,000 jobs for a total of nearly 7.8 million

CPU hours.

Licensing and commercialization

When developing software, it is important to think about licensing to answer the following

questions: (1) by whom and under what circumstances will the software be used?; (2) how will

contributions to the codebase be made, and from whom will they be accepted?; (3) will revenue

be generated and, if so, how and what will it be spent on?; and, (4) will the choice of license

restrict the use of external software libraries?

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 14 / 20

https://doi.org/10.1371/journal.pcbi.1007507


The Rosetta software is released under a unique licensing model, tied to its history[8]. Ini-

tially, when the software was developed solely by students and postdocs in David Baker’s lab at

the University of Washington, it was clear that sharing openly and avoiding disputes over

ownership enabled innovative, rapid scientific progress. As these trainees started their own

research groups at other institutions, they sought a licensing model to preserve the collabora-

tive spirit and encourage sharing by removing barriers to inter-institutional development,

leading to the establishment of the RosettaCommons. By joining the RosettaCommons, mem-

ber institutions agree to provide non-exclusive rights to the copyright for contributions made

to the codebase, and developers sign an agreement assigning copyright of code written by

them to their institution. The software is distributed free of charge to academic, governmental,

and other non-profit institutions. Commercial entities support continued development by

paying a reasonable licensing fee that is based on the number of employees (more detail in S5

Text).

Revenue from commercial licenses, as well as government or private funding, is used to

support meetings, software maintenance, outreach activities, trainings, lab exchanges and

hackathons, mini-grants, and service awards to incentivize and reward community support.

RosettaCommons PIs can apply for mini-grants, which are typically awarded to maintain,

improve, extend and support the codebase, for instance for energy function improvements,

rewrites of major frameworks, development of user interfaces and documentation, etc.

Member institutions of the RosettaCommons collectively hold the copyright to the source

code but make no claim to the IP associated with products derived via use of the software (e.g.

new protein therapeutics). Such IP is owned by the licensee, whether such licensee is academic

or commercial. This has allowed spin-off companies to flourish that either use our software

themselves under a commercial license to perform research and develop products/services, or

such companies have licensed IP created by Rosetta academic licensees to allow product devel-

opment. There are currently several commercial entities based entirely or in-part on our soft-

ware, including the Rosetta Design Group, Arzeda, Cyrus Biotechnology, PvP Biologics,

Neoleukin Therapeutics, and Lyell Immunopharma (see S6 Text).

Documentation

Rosetta is an inherently complex piece of software written for and by experts in the field,

which can result in a complicated interface with lots of options. To ensure that scientists can

use the software effectively, our developers have emphasized robust documentation with

example workflows of real-world use cases called protocol captures[8,9]. Protocol captures

force a developer to consider the perspective of end-users who may have different biological

problems to solve, a differing scientific mindset, and different technical skills. Since scientifi-

cally focused grants (for instance from government agencies) typically do not provide time for

code maintenance and writing documentation, the mini-grants, XRWs, and training or service

awards help incentivize and recognize this important work.

Over the years, our community has used several types of documentation. To assist develop-

ers, the coding conventions for C++ (and later Python) include the use of comment-based

API-level in-code documentation (Doxygen[65]). The combination of coding conventions

with the requirement to write in-code documentation facilitates reading and understanding

code written by someone else. We recently developed a Python-based code template system

for frequently used classes to continue to improve both consistency and code commenting,

while significantly reducing development and debugging time. While in-code Doxygen docu-

mentation is useful for developers, it is less beneficial to end-users because it describes internal

functions and not the interface to an executable or RosettaScripts component.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 15 / 20

https://doi.org/10.1371/journal.pcbi.1007507


Our user base spans thousands of users who require support, and our developers become

users once they run someone else’s code. This provides an incentive to write effective docu-

mentation[38], tutorials and protocol captures to answer common questions. Our documenta-

tion was transferred from an initial Doxygen-based[65] collection of application

documentation pages to a Gollum wiki[38] and then greatly expanded upon during two

XRWs. The Gollum wiki is split into user-facing and developer-facing documentation. The

former contains information about released code, tutorials and generally helpful information

for our users. The latter documentation contains information about experimental features pre-

release and technical information. Both user-facing and developer-facing documentation are

easily editable by RosettaCommons members and up-to-date with the current version of the

software; as such, its detail, accuracy, and searchability have been transformative for both users

and developers. This effort, combined with a push in the community for protocol captures in

the supplementary material of published papers, have drastically improved quantity and qual-

ity of documentation. Another starting point for users is reviewing command lines used in the

provided tests or demos for various applications. In addition to documentation, we have

focused on improving error messages, for instance via XSD in RosettaScripts, to help users

debug their custom scripts. Not all questions and use cases can be anticipated, so we also have

a forum[39] to provide support and use the feedback from our collaborators to advance the

software.

Remaining challenges

Although we have addressed many problems over the last 20 years, there are still several out-

standing issues with respect to the three main areas explored in this paper: (1) Technical: The

tension between best practices in software development and rapid scientific progress means

we must continually provide incentives for prioritizing maintenance, usability, and reproduc-

ibility. Additionally, we are currently reconsidering the basic abstractions and data structures

that we have relied on for over ten years to make use of massively parallel hardware architec-

tures (e.g. GPUs). (2) Social: The enormous growth of our community contributes to questions

of community and lab membership, the effectiveness of our diversity, equity, and inclusivity

efforts, how to preserve the small, informal vibe as we continue to grow, and how to appropri-

ately give credit (i.e. authorship) in an environment that is so clearly a team effort. (3) Dissemi-

nation: The diversity of applications, workflows and computer architectures make it

challenging to ensure that outside users can easily integrate Rosetta into their workflows, and

provide resources for backend compute for web servers, targeting a broader range of scientists.

Fifteen specific challenges are detailed in S7 Text.

Conclusions

Here we use the Rosetta software as an example to highlight the successes, mistakes made, and

lessons learned over the past two decades as we developed a scientific software tool in a global,

diverse, and distributed community. Our software was created mostly in an academic environ-

ment and is widely used beyond the laboratories in which it was created. We demonstrate the

necessity of mastering the technical aspects of software development to create a package that

allows the use of complex tools to drive the cutting edge in computational structural biology

research.

Reasons for success in our community are numerous and largely intertwined. First and

foremost, our community has lowered the barriers for scientific collaboration and thus

enabled groundbreaking science and faster implementation of good ideas. On the technical

side, we benefited from early established coding conventions, version control on GitHub, and

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 16 / 20

https://doi.org/10.1371/journal.pcbi.1007507


extensive code-testing through an integrated framework. We further maintain close interac-

tions with users inside and outside of our community, who enable us to think outside of our

established patterns. Understanding user needs and how our tools are actually used (instead of

how we think that they are used) drives us to continuously improve our software for applica-

tion to “real-world” scientific questions. To best take advantage of our broad developer com-

munity and to best support the users in our community, we created easily editable

documentation that proved transformative in completing the coverage of the documentation

and in supporting our large external user base.

Most importantly, scientific software cannot be sustained without a community around it,

and we rely heavily on our community for training, communication, hackathons, and sharing

expertise, whether scientific or related to software engineering. With the RosettaCommons, we

have established an open community of developers that thrives on collaboration instead of com-

petition: our common goal is to advance science. We are not afraid of tackling the most chal-

lenging scientific questions; in fact, we are motivated by them. Because our community is broad

with a flat hierarchy, members have a voice irrespective of career level and are encouraged to

contribute. Because of this, our community has established its own agreed-upon standards that

members abide by. Forming such a tight-knit and collaborative community would not have

been possible without a solid licensing model that was the result of early, thoughtful decisions

that benefitted both our software and community over time. The agreement signed by all of the

institutional members and developers of the RosettaCommons enables us to share and develop

code independent of institution and commercial licensing of Rosetta allows industry to indi-

rectly support maintenance and continued development through licensing fees.

Science is increasingly performed in teams to address complex questions with advanced

methods and there is a need to address the challenges of achieving scientific goals in large

groups[1]. The challenges we faced are remarkably similar to those noted by the National

Academy’s Committee on Team Science[1]; we believe that these actions and lessons are inde-

pendent of scientific discipline and therefore transferable to other communities. Our diverse

community has thrived by committing to our shared goals and strong belief that, in fact, we

are better together.

Supporting information

S1 Fig. Growth in Rosetta PIs and conference attendees.

(DOCX)

S1 Text. Specific tests for Rosetta running on our automated testing framework.

(DOCX)

S2 Text. Typical development workflow in the Rosetta community.

(DOCX)

S3 Text. Descriptions of the Rosetta board positions.

(DOCX)

S4 Text. Values Statement: Equality and Inclusion in the RosettaCommons.

(DOCX)

S5 Text. More detail on specific licenses.

(DOCX)

S6 Text. Commercial spin-off companies from the Rosetta community.

(DOCX)

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 17 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s007
https://doi.org/10.1371/journal.pcbi.1007507


S7 Text. Details of Remaining Collective Challenges.

(DOCX)

S1 List. Members of the RosettaCommons Consortium.

(DOCX)

Acknowledgments

We thank Pat Gunn and Erin Dolan for comments on the manuscript.

References
1. Council NR. Enhancing the Effectiveness of Team Science. Washington, D.C.: National Academies

Press; 2015. https://doi.org/10.17226/19007 PMID: 26247083

2. Wiltshire TJ, Butner JE, Fiore SM. Problem-Solving Phase Transitions During Team Collaboration.

Cogn Sci. 2018; 42: 129–167. https://doi.org/10.1111/cogs.12482 PMID: 28213928

3. RosettaCommons. [cited 2 Jul 2019]. Available: https://www.rosettacommons.org/

4. Koehler Leman J, Weitzner BD, Lewis SM, Consortium R, Bonneau R. Macromolecular Modeling and

Design in Rosetta: New Methods and Frameworks. preprints.org. 2019 [cited 13 May 2019]. https://doi.

org/10.20944/PREPRINTS201904.0263.V1

5. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, Dimaio FP, Park H, et al. The Rosetta all-atom

energy function for macromolecular modeling and design. J Chem Theory Comput. 2017; 13: 1–35.

https://doi.org/10.1021/acs.jctc.6b01111 PMID: 28068772

6. Hannay JE, MacLeod C, Singer J, Langtangen HP, Pfahl D, Wilson G. How do scientists develop and

use scientific software? 2009 ICSE Workshop on Software Engineering for Computational Science and

Engineering. IEEE; 2009. pp. 1–8. https://doi.org/10.1109/SECSE.2009.5069155

7. Nowogrodzki A. How to support open-source software and stay sane. Nature. 2019; 571: 133–134.

https://doi.org/10.1038/d41586-019-02046-0 PMID: 31263262

8. Renfrew PD, Campbell G, Strauss CEM, Bonneau R. The 2010 Rosetta Developers Meeting: Macro-

molecular Prediction and Design Meets Reproducible Publishing. Uversky VN, editor. PLoS One. 2011;

6: e22431. https://doi.org/10.1371/journal.pone.0022431 PMID: 21909349

9. Bender BJ, Cisneros A, Duran AM, Finn JA, Fu D, Lokits AD, et al. Protocols for Molecular Modeling

with Rosetta3 and RosettaScripts. Biochemistry. 2016; acs.biochem.6b00444. https://doi.org/10.1021/

acs.biochem.6b00444 PMID: 27490953

10. Allison DB, Shiffrin RM, Stodden V. Reproducibility of research: Issues and proposed remedies. Proc

Natl Acad Sci U S A. 2018; 115: 2561–2562. https://doi.org/10.1073/pnas.1802324115 PMID:

29531033

11. Stodden V, Mcnutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al. Enhancing reproducibility for

computational methods. Science (80-). 2016; 354: 1240–41. https://doi.org/10.1126/science.aah6168

PMID: 27940837

12. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson JM, Jacak R, et al. ROSETTA3: An Object-

Oriented Software Suite for the Simulation and Design of Macromolecules. Methods Enzymol. 2011;

487: 545–74. https://doi.org/10.1016/B978-0-12-381270-4.00019-6 PMID: 21187238

13. The Noun Project. Available: https://thenounproject.com/

14. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of Protein Tertiary Structures from Fragments

with Similar Local Sequences using Simulated Annealing and Bayesian Scoring Functions. 1997.

15. Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D. Improved recognition of native-like

protein structures using a combination of sequence-dependent and sequence-independent features of

proteins. Proteins. 1999; 34: 82–95. Available: http://www.ncbi.nlm.nih.gov/pubmed/10336385 https://

doi.org/10.1002/(sici)1097-0134(19990101)34:1<82::aid-prot7>3.0.co;2-a PMID: 10336385

16. Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein structure prediction of CASP III targets

using ROSETTA. Proteins. 1999;Suppl 3: 171–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/

10526365

17. Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CEM, et al. Rosetta in CASP4: Progress in

Ab Initio Protein Structure Prediction. 2002; 126: 119–126. https://doi.org/10.1002/prot.1170 PMID:

11835488

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 18 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007507.s009
https://doi.org/10.17226/19007
http://www.ncbi.nlm.nih.gov/pubmed/26247083
https://doi.org/10.1111/cogs.12482
http://www.ncbi.nlm.nih.gov/pubmed/28213928
https://www.rosettacommons.org/
https://doi.org/10.20944/PREPRINTS201904.0263.V1
https://doi.org/10.20944/PREPRINTS201904.0263.V1
https://doi.org/10.1021/acs.jctc.6b01111
http://www.ncbi.nlm.nih.gov/pubmed/28068772
https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.1038/d41586-019-02046-0
http://www.ncbi.nlm.nih.gov/pubmed/31263262
https://doi.org/10.1371/journal.pone.0022431
http://www.ncbi.nlm.nih.gov/pubmed/21909349
https://doi.org/10.1021/acs.biochem.6b00444
https://doi.org/10.1021/acs.biochem.6b00444
http://www.ncbi.nlm.nih.gov/pubmed/27490953
https://doi.org/10.1073/pnas.1802324115
http://www.ncbi.nlm.nih.gov/pubmed/29531033
https://doi.org/10.1126/science.aah6168
http://www.ncbi.nlm.nih.gov/pubmed/27940837
https://doi.org/10.1016/B978-0-12-381270-4.00019-6
http://www.ncbi.nlm.nih.gov/pubmed/21187238
https://thenounproject.com/
http://www.ncbi.nlm.nih.gov/pubmed/10336385
https://doi.org/10.1002/(sici)1097-0134(19990101)34:1<82::aid-prot7>3.0.co;2-a
https://doi.org/10.1002/(sici)1097-0134(19990101)34:1<82::aid-prot7>3.0.co;2-a
http://www.ncbi.nlm.nih.gov/pubmed/10336385
http://www.ncbi.nlm.nih.gov/pubmed/10526365
http://www.ncbi.nlm.nih.gov/pubmed/10526365
https://doi.org/10.1002/prot.1170
http://www.ncbi.nlm.nih.gov/pubmed/11835488
https://doi.org/10.1371/journal.pcbi.1007507


18. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-MM, Khare SD, Koga N, et al. RosettaScripts: A

scripting language interface to the Rosetta Macromolecular modeling suite. PLoS One. 2011; 6: 1–10.

https://doi.org/10.1371/journal.pone.0020161 PMID: 21731610

19. Chaudhury S, Lyskov S, Gray JJ. PyRosetta: a script-based interface for implementing molecular

modeling algorithms using Rosetta. Bioinformatics. 2010; 26: 689–691. https://doi.org/10.1093/

bioinformatics/btq007 PMID: 20061306

20. Gray, J. J., Chaudhury, S., Lyskov, S., and Labonte JW. The PyRosetta Interactive Platform for Protein

Structure Prediction and Design: A Set of Educational Modules. 2014 [cited 20 Oct 2015]. Available:

http://www.amazon.com/PyRosetta-Interactive-Platform-Structure-Prediction/dp/1500968277

21. CVS—Concurrent Versions System. In: http://savannah.nongnu.org/projects/cvs.

22. SVN—Apache Subversion. In: https://subversion.apache.org/.

23. GitHub. In: https://github.com/.

24. Buildbot. In: https://buildbot.net/.

25. Jenkins. In: https://jenkins.io/.

26. GitLab. In: https://about.gitlab.com/.

27. Travis CI—continuous integration. In: https://travis-ci.org/.

28. Rosetta Coding Conventions. [cited 3 Jul 2019]. Available: https://www.rosettacommons.org/docs/

latest/development_documentation/Coding-Conventions

29. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, et al. Predicting protein structures with a

multiplayer online game. Nature. 2010; 466: 756–760. https://doi.org/10.1038/nature09304 PMID:

20686574

30. Kleffner R, Flatten J, Leaver-Fay A, Baker D, Siegel JB, Khatib F, et al. Foldit Standalone: a video

game-derived protein structure manipulation interface using Rosetta. Valencia A, editor. Bioinformatics.

2017; 33: 2765–2767. https://doi.org/10.1093/bioinformatics/btx283 PMID: 28481970

31. Khatib F, Cooper S, Tyka MD, Xu K, Makedon I, Popovic Z, et al. Algorithm discovery by protein folding

game players. Proc Natl Acad Sci U S A. 2011; 108: 18949–53. https://doi.org/10.1073/pnas.

1115898108 PMID: 22065763

32. Dsilva L, Mittal S, Koepnick B, Flatten J, Cooper S, Horowitz S. Creating custom Foldit puzzles for

teaching biochemistry. Biochem Mol Biol Educ. 2019; 47: 133–139. https://doi.org/10.1002/bmb.21208

PMID: 30638297

33. Rosetta user documentation. In: https://www.rosettacommons.org/docs/latest/Home [Internet]. Avail-

able: https://www.rosettacommons.org/docs/latest/Home

34. Nerli S, Sgourakis NG. CS-ROSETTA. Methods Enzymol. 2018 [cited 24 Nov 2018]. https://doi.org/10.

1016/BS.MIE.2018.07.005 PMID: 30611429

35. Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination.

Prog Nucl Magn Reson Spectrosc. 2018;106–107: 1–25. https://doi.org/10.1016/J.PNMRS.2018.03.

002 PMID: 31047599

36. Schenkelberg CD, Bystroff C. InteractiveROSETTA: A graphical user interface for the PyRosetta pro-

tein modeling suite. Bioinformatics. 2015 [cited 2 Sep 2015]. https://doi.org/10.1093/bioinformatics/

btv492 PMID: 26315900

37. MediaWiki. In: https://www.mediawiki.org/wiki/MediaWiki.

38. Gollum wiki. In: https://github.com/gollum/gollum.

39. RosettaCommons Forum. [cited 7 Jul 2019]. Available: https://www.rosettacommons.org/forum

40. Rosetta workshops. In: http://structbio.vanderbilt.edu/comp/workshops/rosetta/ [Internet]. Available:

http://structbio.vanderbilt.edu/comp/workshops/rosetta/

41. RosettaCommons YouTube channel. In: https://www.youtube.com/channel/

UC5urBzvutWGrJyLvpQ4AFpw.

42. RosettaCommons Code of Conduct. [cited 2 Jul 2019]. Available: https://www.rosettacommons.org/

codeofconduct

43. RosettaCommons Diversity Statement. [cited 2 Jul 2019]. Available: https://www.rosettacommons.org/

diversity

44. Thompson M, Sekaquaptewa D. When Being Different Is Detrimental: Solo Status and the Performance

of Women and Racial Minorities. Anal Soc Issues Public Policy. 2002; 2: 183–203. https://doi.org/10.

1111/j.1530-2415.2002.00037.x

45. Rosetta Commons Research Experience for Undergraduates | RosettaCommons. [cited 7 Jul 2019].

Available: https://www.rosettacommons.org/about/intern

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 19 / 20

https://doi.org/10.1371/journal.pone.0020161
http://www.ncbi.nlm.nih.gov/pubmed/21731610
https://doi.org/10.1093/bioinformatics/btq007
https://doi.org/10.1093/bioinformatics/btq007
http://www.ncbi.nlm.nih.gov/pubmed/20061306
http://www.amazon.com/PyRosetta-Interactive-Platform-Structure-Prediction/dp/1500968277
http://savannah.nongnu.org/projects/cvs
https://subversion.apache.org/
https://github.com/
https://buildbot.net/
https://jenkins.io/
https://about.gitlab.com/
https://travis-ci.org/
https://www.rosettacommons.org/docs/latest/development_documentation/Coding-Conventions
https://www.rosettacommons.org/docs/latest/development_documentation/Coding-Conventions
https://doi.org/10.1038/nature09304
http://www.ncbi.nlm.nih.gov/pubmed/20686574
https://doi.org/10.1093/bioinformatics/btx283
http://www.ncbi.nlm.nih.gov/pubmed/28481970
https://doi.org/10.1073/pnas.1115898108
https://doi.org/10.1073/pnas.1115898108
http://www.ncbi.nlm.nih.gov/pubmed/22065763
https://doi.org/10.1002/bmb.21208
http://www.ncbi.nlm.nih.gov/pubmed/30638297
https://www.rosettacommons.org/docs/latest/Home
https://www.rosettacommons.org/docs/latest/Home
https://doi.org/10.1016/BS.MIE.2018.07.005
https://doi.org/10.1016/BS.MIE.2018.07.005
http://www.ncbi.nlm.nih.gov/pubmed/30611429
https://doi.org/10.1016/J.PNMRS.2018.03.002
https://doi.org/10.1016/J.PNMRS.2018.03.002
http://www.ncbi.nlm.nih.gov/pubmed/31047599
https://doi.org/10.1093/bioinformatics/btv492
https://doi.org/10.1093/bioinformatics/btv492
http://www.ncbi.nlm.nih.gov/pubmed/26315900
https://www.mediawiki.org/wiki/MediaWiki
https://github.com/gollum/gollum
https://www.rosettacommons.org/forum
http://structbio.vanderbilt.edu/comp/workshops/rosetta/
http://structbio.vanderbilt.edu/comp/workshops/rosetta/
https://www.youtube.com/channel/UC5urBzvutWGrJyLvpQ4AFpw
https://www.youtube.com/channel/UC5urBzvutWGrJyLvpQ4AFpw
https://www.rosettacommons.org/codeofconduct
https://www.rosettacommons.org/codeofconduct
https://www.rosettacommons.org/diversity
https://www.rosettacommons.org/diversity
https://doi.org/10.1111/j.1530-2415.2002.00037.x
https://doi.org/10.1111/j.1530-2415.2002.00037.x
https://www.rosettacommons.org/about/intern
https://doi.org/10.1371/journal.pcbi.1007507


46. Alford RF, Leaver-Fay A, Gonzales L, Dolan EL, Gray JJ. A cyber-linked undergraduate research expe-

rience in computational biomolecular structure prediction and design. Ouellette F, editor. PLOS Comput

Biol. 2017; 13: e1005837. https://doi.org/10.1371/journal.pcbi.1005837 PMID: 29216185

47. Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, et al. Structure prediction for CASP7 tar-

gets using extensive all-atom refinement with Rosetta@home. Proteins Struct Funct Bioinforma. 2007;

69: 118–128. https://doi.org/10.1002/prot.21636 PMID: 17894356

48. Rosetta@home. In: https://boinc.bakerlab.org/.

49. BOINC—Berkeley Open Infrastructure for Network Computing. In: http://boinc.berkeley.edu/.

50. Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, et al. Compre-

hensive computational design of ordered peptide macrocycles. Science (80-). 2017; 358: 1461–1466.

https://doi.org/10.1126/science.aap7577 PMID: 29242347

51. Drew K, Winters P, Butterfoss GL, Berstis V, Uplinger K, Armstrong J, et al. The Proteome Folding Proj-

ect: proteome-scale prediction of structure and function. Genome Res. 2011; 21: 1981–94. https://doi.

org/10.1101/gr.121475.111 PMID: 21824995

52. Microbiome Immunity Project on the World Community Grid. In: https://www.worldcommunitygrid.org/

research/mip1/overview.do.

53. SCons: A software construction tool—SCons. [cited 8 Jul 2019]. Available: https://scons.org/

54. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. 2004;

32: 526–531. https://doi.org/10.1093/nar/gkh468 PMID: 15215442

55. Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D. Generalized Fragment Picking in Rosetta:

Design, Protocols and Applications. 2011; 6: e23294. https://doi.org/10.1371/journal.pone.0023294

PMID: 21887241

56. Song Y, Dimaio F, Wang RY-RR, Kim DE, Miles C, Brunette T, et al. High-resolution comparative

modeling with RosettaCM. Structure. 2013; 21: 1735–1742. https://doi.org/10.1016/j.str.2013.08.005

PMID: 24035711

57. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, et al. Structure prediction for CASP8

with all-atom refinement using Rosetta. Proteins. 2009; 77 Suppl 9: 89–99. https://doi.org/10.1002/prot.

22540 PMID: 19701941

58. Kortemme T, Kim DE, Baker D. Computational alanine scanning of protein-protein interfaces. Sci

STKE. 2004; 2004: pl2. https://doi.org/10.1126/stke.2192004pl2 PMID: 14872095

59. Ashworth J, Baker D. Assessment of the optimization of affinity and specificity at protein-DNA inter-

faces. Nucleic Acids Res. 2009; 37: e73. https://doi.org/10.1093/nar/gkp242 PMID: 19389725

60. Rosetta Design server. In: http://rosettadesign.med.unc.edu/.

61. Rosetta Backrub server. In: https://kortemmeweb.ucsf.edu/backrub/cgi-bin/rosettaweb.py?query=

index.

62. FlexPepDock server. In: http://flexpepdock.furmanlab.cs.huji.ac.il/.

63. FunHunt server. In: http://funhunt.furmanlab.cs.huji.ac.il/.

64. Lyskov S, Chou FC, Conch??ir S??, Der BS, Drew K, Kuroda D, et al. Serverification of Molecular

Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS One. 2013;

8: 5–7. https://doi.org/10.1371/journal.pone.0063906 PMID: 23717507

65. Doxygen. In: http://www.doxygen.org/.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007507 May 4, 2020 20 / 20

https://doi.org/10.1371/journal.pcbi.1005837
http://www.ncbi.nlm.nih.gov/pubmed/29216185
https://doi.org/10.1002/prot.21636
http://www.ncbi.nlm.nih.gov/pubmed/17894356
https://boinc.bakerlab.org/
http://boinc.berkeley.edu/
https://doi.org/10.1126/science.aap7577
http://www.ncbi.nlm.nih.gov/pubmed/29242347
https://doi.org/10.1101/gr.121475.111
https://doi.org/10.1101/gr.121475.111
http://www.ncbi.nlm.nih.gov/pubmed/21824995
https://www.worldcommunitygrid.org/research/mip1/overview.do
https://www.worldcommunitygrid.org/research/mip1/overview.do
https://scons.org/
https://doi.org/10.1093/nar/gkh468
http://www.ncbi.nlm.nih.gov/pubmed/15215442
https://doi.org/10.1371/journal.pone.0023294
http://www.ncbi.nlm.nih.gov/pubmed/21887241
https://doi.org/10.1016/j.str.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24035711
https://doi.org/10.1002/prot.22540
https://doi.org/10.1002/prot.22540
http://www.ncbi.nlm.nih.gov/pubmed/19701941
https://doi.org/10.1126/stke.2192004pl2
http://www.ncbi.nlm.nih.gov/pubmed/14872095
https://doi.org/10.1093/nar/gkp242
http://www.ncbi.nlm.nih.gov/pubmed/19389725
http://rosettadesign.med.unc.edu/
https://kortemmeweb.ucsf.edu/backrub/cgi-bin/rosettaweb.py?query=index
https://kortemmeweb.ucsf.edu/backrub/cgi-bin/rosettaweb.py?query=index
http://flexpepdock.furmanlab.cs.huji.ac.il/
http://funhunt.furmanlab.cs.huji.ac.il/
https://doi.org/10.1371/journal.pone.0063906
http://www.ncbi.nlm.nih.gov/pubmed/23717507
http://www.doxygen.org/
https://doi.org/10.1371/journal.pcbi.1007507

